x86 Crash Course

With a focus on Linux and a glance to x86_64

Daniele Mammone, daniele.mammone@polimi.it
April 3, 2024

Based on material from Mario Polino, Armando Bellante and Lorenzo Binosi

The x86 Architecture

Instruction Set Architecture (ISA)

“Logical” specification of a computer architecture

Concerned with programming concepts

e instructions, registers, interrupts, memory architecture, ...

May differ (widely) from the actual microarchitecture

Examples:
x86 (1A-32 and x86_64)
ARM (mobile devices)

e MIPS (embedded devices, e.g., consumer routers)
e AVR, SPARC, Power, RISC YV, ...

Giorgio

Born in 1978, 16-bit ISA (Intel 8086)

Evolved to a 32-bit ISA (1985, Intel 80386)
Evolved to a 64-bit ISA (2003, AMD Opteron)
CISC design (e.g., string operations)

Many legacy features (e.g, segmentation)
We'll see the basics of the “core” ISA

e There is also the floating point unit, processor-specific
features, and extensions such as SIMD (MMX, SSE, SSE2)
with their own instructions and registers’

LComplete reference: Intel Software Developer's Manual, about 5,000 pages
(https://software.intel.com/en-us/articles/intel-sdm)

https://software.intel.com/en-us/articles/intel-sdm
Giorgio

Von Neumann Architecture

Keybord/Video

4

I

1/0 Interface

Data
2 Address
Control

0x8040204...

0x8040203...

0x8040202...

0x8040201...

0x8040200...

o 1 2 3 4 5 6 7 8 9 A B C D E F
00 |01 | 02| 03|04 |05|06|07|08|09]|O0A]OB|0C]|OD]OE|OF
E8 | FF | FF | FF | EO | FF | FF | FF | D8 | FF | FF | FF | DO | FF | FF | FF
50 | 20 [40 | 80 | 60 [20 | 40 | 80 [70 | 20 | 40 | 80 | 80 | 20 [40 | 80
48 | 65 | 6C | 6C | 6F [20 | 77 | 6F | 72 [6C | 64 | 00 | 00 | 00 | 00 | 0O
Hef e | e | wi [et | e | | d | 00 | 00 | 00 | 00 | 00

IA-32: Registers

AX e General-purpose registers
V—J—V

\ [aH [AL | Eax e EAX, EBX, ECX, EDX
B e EST, EDI (source and destination

index for string operations)

l—k—V
\ | B4 [BL | EBX

X
| — . I e EBP (base pointer)
DX e ESP (stack pointer)
| I T e Instruction pointer: EIP
\ | SI | EsT
‘ [oI | b1 e No explicit access
\ | BP | e8P e Modified by jmp, call, ret
\ [sp JEsp e Read through the stack (saved IP)
l (G e Program status and control: EFLAGS
| | EFLAGS _
" i ; 3 e (segment registers)

Giorgio

Giorgio

Giorgio

Giorgio

Giorgio

IA-32: EFLAGS register

32-bits register, boolean flags

Program status: overflow, sign, zero, auxiliary carry (BCD),
parity, carry

e Indicate the result of arithmetic instructions

e Extremely important for control flow

Program control: direction flag

e controls string instructions (auto-increment or auto-decrement)

System: control operating-system operations

IA-32: EFLAGS register

313029282726252423222120191817161514131211109 8 7 6 5§ 4 3 2 1 0

IIIAV
D (V)

ID Flag (ID)—‘
Virtual Interrupt Pending (VIP)

X

X

X Virtual Interrupt Flag (VIF)

X Alignment Check / Access Control (AC)
X Virtual-8086 Mode (VM
X Resume Flag (RFY
X Nested Task (NT)
X 1/O Privilege Level (IOPL)
S Overflow Flag (OF)
C Direction Flag (DF
X
X
s
S
S
S
S
s
C
X

R|o|N olp|1|T|s|z| |Aal,|P|,|C
FIOT FIFIFIF|F|F|O[F|O|F[T|F

00—

Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Aucxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Fundamental data types

byte 8 bits

word 2 bytes
dword Doubleword, 4 bytes (32 bits)
qword Quadword, 8 bytes (64 bits)

Assembly and Machine Code

Assembly language: specific to each ISA, mapped to binary code

gec, clang as
compiler assembler
push ebp 55
q q mov ebp, esp 89 ES
HIiE GERN()) mov ebx, 10 BB OA 00 00 00

int n = 10;

return n + fun(); call fun E8 FC FF FF FF
) ’ add eax, ebx 01 D8
leave c9
ret E3
‘\—i—/\ 'i
decompiler disassembler reverse
engineering
IDA’s hex-rays, ghidra, ... objdump, IDA, binary ninja, ...

For simplicity, we don't deal with the linking process.

10

Assembly: Syntax

Two main syntaxes:

e Intel: default in most Windows programs (e.g., IDA)
e AT&T: default in most UNIX tools (e.g., gdb, objdump)

Beware: The order of the operands is different

We will use the Intel syntax

11

Assembly: Syntax

move the value 0 to EAX
Intel AT&T
mov eax, Oh movl $0x0,%eax
move the value 0 to the address contained in EBX-+4

Intel AT&T
mov [ebx+4h],0h movl $0x0,0x4 (%ebx)

12

x86: data movement

Examples

Immediate to register:

mov eax, 4h EAX = 4

Register to register:

mov eax, ebx EAX = EBX
Memory to register (and register to memory):

mov eax, [ebx] EAX = *EBX

mov eax, [ebx + 4h] EAX = *(EBC + 4)

mov eax, [edx + ebx*4 + 8] EAX = *(EDX + EBX * 4 + 8)

Note: memory to memory is an invalid combination?

2Except in some instructions, such as movs (move from string to string).

13

x86 Assembly and Machine Code

Instruction = opcode + operand

Example
mov r/mr | ebp, esp
mov ebp, esp 89 | E5 10
mov bl .)
mov bl, 10 B3 0A

size prefix

mov bx, 10 66)BB) @A 00
mov ebx
mov ebx, 10 OA 00 00 00

prefix + opcode (1-3 bytes) | operands

Beware: in x86, instructions have variable length.

14

Basic instructions

Data Transfer: mov, push, pop, xchg, lea

Integer Arithmetic: add, sub, mul, imul, div, idiv, inc,

dec

Logical: and, or, not, xor

Control Transfer: jmp, jne, call, ret

and lots more. . .

ii5)

Data Transfer: mov

e mov destination, source

source: immediate, register, memory location
destination: register or memory location
e Basic load/store operations

e Register to register, register to memory, immediate to register,
immediate to memory

e Memory to memory is INVALID (in every instruction)
Examples

MOV eax, ebx MOV eax, FFFFFFFFh MOV ax, bx

MOV [eax],ecx | MOV [eax],[ecx] NO!!Il | MOV al, FFh

16

Integer Arithmetics: add and sub

add destination, source
dest < dest + source

sub destination, source

dest < dest — source

e Addressing:
source: immediate, register, memory location
destination: register or memory location
(the destination has to be at least as large as the source)
e Negate a value: neg [op]

e Bitwise operations: and, or, xor, not work similarly
Examples
add esp, 44h | add edx, cx add al, dh

sub esp, 33h | sub eax, ebx | sub [eax], 1h

17

Integer Arithmetics: unsigned multiply (mul)

e mul source
source: register or memory location
e dest + implied_op X source
e Implied operands according to the size of source
e First operand: AL, AX, or EAX
e Destination: AX, DX:AX, EDX:EAX (double the size of source)
e Signed multiply: imul
Example

e mul ebx: EDX:EAX < EAX x EBX

e most significant bits of the result in EDX
e least significant bits of the result in EAX

e mul cx: DX:AX + AX * CX
e mul cl: AX < AL * CL

18

Integer Arithmetics: unsigned divide (div)

e div source
source: register or a memory location

Computes quotient and remainder
Implied operand: EDX:EAX (according to the size of source)
Signed divide: idiv

Examples

e div ebx (4 bytes)
e EAX <+ EDX:EAX / EBX
e EDX <« EDX:EAX % EBX

e div bx (2 bytes)

e AX < DX:AX / BX DX = DX:AX % BX
e div bl (1 byte)
e AL < AX / BX AH = AX 7, BX

19

Integer Arithmetics: cmp and test

cmp opl, 0p2 test opl, op2

Computes opl — op2 | Computes opl & op?

e Sets the flags (ZF,CF, OF, ...)

e Discards the result
Examples

cmp eax, ebx | cmp eax, 44BBCCDDh cmp al, dh

cmp al, 44h cmp ax,FFFFh cmp [eax],4h

20

Control-Flow Instructions: conditional jumps

j<cc> address or offset

Jump to address if and only if a certain condition is verified

0x0804839¢C

0x080483al

0x080483a3

0x080483ad

<cc>: condition
e O,NO,S,NS,E,ZNE, ...

Program Instruction e based on one or more status flags
cmp eax, ebx Of EFLAGS

jz oxe8e483ad

Examples:
lif ZeroFlag == 0

e jz = jump if zero
Instruction (jump not taken)

izeoFlag==1 ® jg = jump if greater than

Instruction (if jump taken) <— ° jlt = Jump if less than

Reference: http://www.unixwiz.

net/techtips/x86-jumps.html
21

http://www.unixwiz.net/techtips/x86-jumps.html
http://www.unixwiz.net/techtips/x86-jumps.html

Control-Flow Instructions: unconditional jump jmp

0x08048320 Program Instruction ° Jmp address or offset
ox0804831 o e 0 e Unconditional jump: just set the
EIP to address
0x080483a3 Instruction never executed) i
e Can be also relative: increment or
decrement EIP by an offset
0x080483ad Other Block Instruction |«

22

Exercise 1

Translate the following C code in assembly x86. Assume EBX <«
b, ECX « c. Finally, a goes in EAX.

if (c == 0)
a = b;
else
a = -b;

23

mov
cmp

jne

jmp
ELSE:

mov

sub
ENDIF:

nop

edx, O

ecx, edx
BIESE]
eax, ebx
ENDIF
eax, O
eax, ebx

24

Exercise 2

Translate the following C code in assembly x86. The variable a
goes in EAX.

a = 0;
for(i = 0; i < 10; i++)

a += 1i;

25

mov
mov

LOOP:
cmp
jge
add
inc
jmp

END:

nop

eax,
ebx,

ecx,

ebx,
END
eax,
ebx
LOOP

10

ecx

ebx

26

A very simple example (what does it do?)

Assume that the input is in registers: ECX and EDX; output: EAX

mov eax, ecx
mov ebx, edx
cmp ebx, 0
jz LABEL
LOOP:
cmp ebx, 1
jle RET
mul ecx
sub ebx, 1
jmp LOOP
LABEL:
mov eax, 1
RET:

27

Load effective address (lea)

e lea destination, source

source: memory location
destination: register
e Like a mov, but it is storing the pointer, not the value

Example

Registers Memory

EAX | 0x00000000 Ox7C81776F 0x00403A40
0x7C911000 0x00403A44

EBX | 0x00403A40 0x0012C140 0x00403A48

Ox7FFDB00O 0x00403A4C

lea eax, [ebx + 8] — EAX = 0x00403A48

N.B.: with mov eax, [ebx+8] — EAX = 0x0012C140 -

Basic Instructions: nop

e nop = No Operation. Just move to next instruction.
e The opcode is pretty famous and is 0x90

e Really useful in exploitation (we will see!)

29

Interrupts and Syscalls

e int value

e value: software interrupt number to generate (0-255)

e Every OS has its set of interrupt numbers (e.g., 80h for Linux
system calls)

e syscall used for Linux 64-bit

e sysenter used by Microsoft Windows

30

he x86_64 ISA

RAX x| ax | RSP ESP s
AH AL
‘ RBX \ EBX BX ‘ RBP \ EBP BpBPL
BH BL
e [ex | o | —
M R8 R8D R8W
T =\ G
il e 7o° purpose
‘ RST [ESI SI registers
o J R15 | R15D [Raisw
‘ RDI | eor [o1 | RIS

RIP EIP RFLAGS EFLAGS

63 31 15 7] 63 31

-
&
~
®

31

Endianness: convention that specifies in which order the bytes of
a data word are lined up sequentially in memory.
Big-endian (left)

Systems in which the most significant Menory | QAOBOCOD
byte of the word is stored in the

smallest address given.

Tt

Big-endian

Little-endian

0A0BOCOD Memory

a:

Systems in which the least significant

byte is stored in the smallest address.

> a+l:

> a+2:

a+3:
Little-endian

32

Program Layout and Functions

executable is mapped to memory in Linux (ELF)

Executable Description

plt This section holds stubs which are responsible of
external functions linking.

.text This section holds the "text,” or executable instructions, of a program.

.rodata This section holds read-only data that contribute to
the program’s memory image

.data This section holds initialized data that contribute to
the program’s memory image

.bss This section holds uninitialized data that contributes to the program’s memory image.
By definition, the system initializes the data with zeros when the program begins to run.

.debug This section holds information symbolic debugging.

.init This section holds executable instructions that contribute to the process initialization code.
That is, when a program starts to run, the system arranges to execute the code in this
section before calling the main program entry point (called main for C programs).

.got This section holds the global offset table.

33

Simplified program memory layout

Low addresses (0x80000000)

Shared libraries

.text

.bss

Heap (grows J)

Stack (grows 1)

env

argv

High addresses (Oxbfffffff)

34

The Stack

e LIFO (last in first out) data structure

Used to manage functions

e local variables
e return addresses

Handled through the register ESP (stack pointer)

Remember: the stack grows toward lower addresses
(downward the address space)

85

Stack Management Instructions: push

push immediate or register

Stores the immediate or register value at the top of the stack and
decrements the ESP of the operand size
Example
Low addresses (0x80000000)
Initial condition: EAX = 30

push eax

is equivalent to:

100 «— ESP

sub esp, 4
mov DWORD PTR [esp], eax

High addresses (Oxbfffffff)
36

Stack Management Instructions: push

push immediate or register

Stores the immediate or register value at the top of the stack and
decrements the ESP of the operand size
Example
Low addresses (0x80000000)
Initial condition: EAX = 30

push eax

is equivalent to: «~— ESP

100

mov DWORD PTR [esp], eax

High addresses (Oxbfffffff)
36

Stack Management Instructions: push

push immediate or register

Stores the immediate or register value at the top of the stack and
decrements the ESP of the operand size

Example

Low addresses (0x80000000)

Final condition: EAX = 30

push eax

is equivalent to: 30 «~— ESP
sub esp, 4 —

High addresses (Oxbfffffff)

36

Stack Management Instructions: pop

pop destination

Loads to the destination a word off the top of the stack, then it
increases ESP of the operand’s size.
Example
Low addresses (0x80000000)
Initial condition: EAX = 777

pop eax

is equivalent to: 30 «— ESP
100

mov eax, DWORD PTR [esp]
add esp, 4

High addresses (Oxbfffffff)

37

Stack Management Instructions: pop

pop destination
Loads to the destination a word off the top of the stack, then it
increases ESP of the operand’s size.
Example

Low addresses (0x80000000)

Initial condition: EAX = 30

pop eax

is equivalent to: 30 «— ESP
100

add esp, 4

High addresses (Oxbfffffff)

37

Stack Management Instructions: pop

pop destination

Loads to the destination a word off the top of the stack, then it
increases ESP of the operand’s size.
Example

Low addresses (0x80000000)
Final condition: EAX = 30

pop eax

is equivalent to: 30
100 «— ESP

mov eax, DWORD PTR [esp]

High addresses (Oxbfffffff)

37

Calling a function

Instruction call:

e Push to the stack the address of the next instruction
e Move the address of the first instruction of the callee into EIP

Example: Let’s call func, located at 0x800bff00
Low addresses (0x80000000)

Equivalent to:

e push address(of the

instruction after
the call!)

. Stack top k— ESP
e jmp func

(reminder: we can't read or
set EIP directly!)

High addresses (Oxbfffffff)

EIP = 0x8001020
38

Calling a function

Instruction call:

e Push to the stack the address of the next instruction
e Move the address of the first instruction of the callee into EIP
Example: Let’s call func, located at 0x800bff00

Low addresses (0x80000000)

Equivalent to:

0x8001025 k— ESP

o jmp func Stack top
(reminder: we can't read or
set EIP directly!) High addresses (Oxbfffffff)

EIP = 0x8001020
38

Calling a function

Instruction call:

e Push to the stack the address of the next instruction
e Move the address of the first instruction of the callee into EIP
Example: Let’s call func, located at 0x800bff00

Low addresses (0x80000000)

Equivalent to:

e push address(of the

instruction after
0x8001025 k— ESP

the call!)
o Stack top
(reminder: we can't read or
set EIP directly!) High addresses (Oxbfffffff)

EIP = 0x800bff00
38

Returning from a function

Instruction ret:

e Restores the return address saved by call from the top of the

stack

Example: let’s return from func

Equivalent to:

e pop eip
(reminde: we can't read or set
EIP directly!)

Low addresses (0x80000000)

0x8001025

k— ESP

Stack top

High addresses (Oxbfffffff)
EIP = 0x800bff00

39

Returning from a function

Instruction ret:

e Restores the return address saved by call from the top of the

stack

Example: let’s return from func

Equivalent to:

(reminde: we can't read or set
EIP directly!)

Low addresses (0x80000000)

Stack top

k— ESP

High addresses (Oxbfffffff)
EIP = 0x8001025

39

Functions and Stack Frames

Low addresses (0x80000000)

At the beginning of a

function, the function itself

must reserve space for its
local variables.

void foo() {
int a;
int b;

int c;

} Return addr (sEIP) k— ESP

High addresses (Oxbfffffff)
40

Functions and Stack Frames

Low addresses (0x80000000)

At the beginning of a

function, the function itself

must reserve space for its

local variables.

F0O:

mov ebp, esp

sub esp, Oxc
mov [ebp - 0x8], 0x0
add esp, Oxc

Return addr (SsEIP) k— ESP

High addresses (Oxbfffffff)
41

Functions and Stack Frames

Low addresses (0x80000000)

At the beginning of a

function, the function itself

must reserve space for its

local variables.

F0O:
mov ebp, esp

sub esp, Oxc
mov [ebp - 0x8], 0x0
add esp, Oxc

Return addr (sEIP) k— ESP, EBP

High addresses (Oxbfffffff)
42

Functions and Stack Frames

Low addresses (0x80000000)

At the beginning of a

function, the function itself

must reserve space for its

local variables.

el (a) <— ESP
mov ebp, esp
sub esp, Oxc « (b)
mov [ebp - 0x8], 0x0
add esp, Oxc (C)
ret

Return addr (SsEIP) k— EBP

High addresses (Oxbfffffff)
43

Functions and Stack Frames

Low addresses (0x80000000)

At the beginning of a

function, the function itself

must reserve space for its

local variables.

el (a) <— ESP
mov ebp, esp
sub esp, Oxc 0 (b)
mov [ebp - 0x8], 0x0 <
add esp, Oxc (C)
ret

Return addr (SsEIP) k— EBP

High addresses (Oxbfffffff)
44

Functions and Stack Frames

Low addresses (0x80000000)

At the beginning of a

function, the function itself

must reserve space for its

local variables.

F0O:

mov ebp, esp

sub esp, Oxc 0
mov [ebp - 0x8], 0x0
add esp, Oxc <

Return addr (sEIP) k— ESP, EBP

High addresses (Oxbfffffff)
45

Functions and Stack Frames

Low addresses (0x80000000)

At the beginning of a

function, the function itself

must reserve space for its

local variables.

F0O:

mov ebp, esp

sub esp, Oxc 0
mov [ebp - 0x8], 0x0
add esp, Oxc

ret <

Return addr (SsEIP) k— EBP
ESP
”

High addresses (Oxbfffffff)
46

Functions and Stack Frames

That works!!! But what if foo calls bar.

void foo() {
int a;
int b;

int c;

bar();
b =0;
¥

void bar() {
int d;

47

Functions and Stack Frames

Low addresses (0x80000000)

FOO:

mov ebp, esp

sub esp, Oxc

call BAR

mov [ebp - 0x8], 0x0
add esp, Oxc

ret

BAR:

mov ebp, esp

sub esp, 0x4
mov [ebp - 0x4], Ox1

add esp, 0x4 Return addr (sEIP) k— ESP

High addresses (Oxbfffffff)
48

Functions and Stack Frames

Low addresses (0x80000000)

F0O:
mov ebp, esp <

sub esp, Oxc

call BAR

mov [ebp - 0x8], 0x0
add esp, Oxc

ret

BAR:

mov ebp, esp

sub esp, 0x4
mov [ebp - 0x4], Ox1

add esp, Ox4 Return addr (sEIP) k— ESP, EBP

High addresses (Oxbfffffff)
49

Functions and Stack Frames

Low addresses (0x80000000)

FOO:

mov ebp, esp

sub esp, Oxc <

call BAR

mov [ebp - 0x8], 0x0
add esp, Oxc

ret
(a) «— ESP
BAR:
mov ebp, esp (b)
sub esp, 0x4 (c)
mov [ebp - 0x4], Ox1
add esp, 0x4 Return addr (sEIP) k— EBP
ret

High addresses (Oxbfffffff)
50

Functions and Stack Frames

Low addresses (0x80000000)

FOO:
mov ebp, esp
sub esp, Oxc
call BAR
mov [ebp - 0x8], 0x0
add esp, Oxc foo ret addr (SEIP) k— ESP
ret
(a)
BAR:
mov ebp, esp (b)
sub esp, 0x4 (C)
mov [ebp - 0x4], Ox1
add esp, Ox4 Return addr (SsEIP) k— EBP
ret

High addresses (Oxbfffffff)
Bl

Functions and Stack Frames

Low addresses (0x80000000)

FOO:
mov ebp, esp
sub esp, Oxc
call BAR
mov [ebp - 0x8], 0x0
add esp, Oxc foo ret addr (sEIP) k— ESP, EBP
ret
(a)
BAR:
mov ebp, esp (b)
sub esp, 0x4 (C)
mov [ebp - 0x4], Ox1
add esp, Ox4 Return addr (sEIP)
ret

High addresses (Oxbfffffff)
52

Functions and Stack Frames

Low addresses (0x80000000)

FOO:
mov ebp, esp
sub esp, Oxc
call BAR (d) k— ESP
mov [ebp - 0x8], 0x0
add esp, Oxc foo ret addr (SEIP) k— EBP
ret
(a)
BAR:
mov ebp, esp (b)
sub esp, 0x4 < (C)
mov [ebp - 0x4], Ox1
add esp, Ox4 Return addr (sEIP)
ret

High addresses (Oxbfffffff)
53

Functions and Stack Frames

Low addresses (0x80000000)

FO0O:
mov ebp, esp
sub esp, Oxc
call BAR 1 (d) k— ESP
mov [ebp - 0x8], 0x0
add esp, Oxc foo ret addr (SEIP) k— EBP
ret
(a)
BAR: (b)
mov ebp, esp
sub esp, 0x4 (C)
mov [ebp - 0x4], O0xl <«
add esp, Ox4 Return addr (sEIP)
ret

High addresses (Oxbfffffff)
54

Functions and Stack Frames

Low addresses (0x80000000)

FO0O:
mov ebp, esp
sub esp, Oxc
call BAR 1
mov [ebp - 0x8], 0x0
add esp, Oxc foo ret addr (sEIP) k— ESP, EBP
ret
(a)
BAR:
mov ebp, esp (b)
sub esp, 0x4 (C)
mov [ebp - 0x4], Ox1
add esp, 0x4 < Return addr (sEIP)
ret

High addresses (Oxbfffffff)
55

Functions and Stack Frames

Low addresses (0x80000000)

FOO:

mov ebp, esp

sub esp, Oxc

call BAR 1

mov [ebp - 0x8], 0x0

add esp, Oxc foo ret addr (sEIP) k— EBP

ret

(a) «— ESP

BAR:

mov ebp, esp (b)

sub esp, 0x4 (C)

mov [ebp - 0x4], Ox1

add esp, Ox4 Return addr (sEIP)

ret <

High addresses (Oxbfffffff)
56

Functions and Stack Frames

Wrong memory access!!! EBP Low addresses (0x80000000)
changed and we lost the old

value!
0

F0O:
mov ebp, esp 1

sub esp, Oxc
P foo ret addr (sEIP) k+— EBP

call BAR
mov [ebp - 0x8], 0x0 <+ (a) ESp
add esp, Oxc
ret (b)
BAR: (C)
mov ebp, esp
sub esp, 0x4 Return addr (sEIP)
mov [ebp - 0x4], Ox1
add esp, 0x4
ret

High addresses (Oxbfffffff)
57

Functions and Stack Frames

Redacted!

F0O:
push ebp
mov ebp, esp
sub esp, Oxc
call BAR
mov [ebp - 0x8], 0x0
leave

ret

BAR:
push ebp
mov ebp, esp
sub esp, 0x4
mov [ebp - 0x4], Ox1
leave

ret

58

Functions and Stack Frames

e Stack frame = stack area
allocated to a function

e EBP register: pointer to
the beginning (base) of a
function’s frame

e At the beginning of a
function:

e Save EBP to stack
e Set EBP to the address
of the function’s frame

Low addresses (0x80000000)

Local variables

k— ESP

Saved EBP

«— EBP

Return addr (SEIP)

Arguments

Local variables

caller's frame callee's frame

Saved EBP

Return addr (sEIP)

High addresses (Oxbfffffff)

59

Entering a function

Example: We’ve just called func, located at 0x800bff00
Low addresses (0x80000000)

Setup the stack frame
0x8001025 k— ESP

func's frame

e push ebp

e mov ebp, esp
caller's sEBP ¢ EBP

High addresses (Oxbfffffff)

60

Entering a function

Example: We’ve just called func, located at 0x800bff00
Low addresses (0x80000000)

Saved EBP k— ESP

Setup the stack frame
0x8001025

func's frame

e mov ebp, esp
caller's sEBP ¢ EBP

High addresses (Oxbfffffff)

60

Entering a function

Example: We’ve just called func, located at 0x800bff00
Low addresses (0x80000000)

2 EBP
E Saved EBP ﬁ ESP
Setup the stack frame ©
< 0x8001025
e push ebp &
[)
caller's sEBP

High addresses (Oxbfffffff)

60

Leaving a function

Instruction leave: restores the caller's base pointer

Example: We’'re about to return from func
Low addresses (0x80000000)

% (... locals ...) k— ESP
Equivalent to: L; Saved EBP ¥— EBP
e mov esp, ebp E 0x8001025
e pop ebp
caller's sEBP

High addresses (Oxbfffffff)

61

Leaving a function

Instruction leave: restores the caller's base pointer

Example: We’'re about to return from func
Low addresses (0x80000000)

g (... locals ...)
g ESP
Equivalent to: 0 Saved EBP ﬁ EBP
O
=]
° & 0x8001025
e pop ebp
caller's sEBP

High addresses (Oxbfffffff)

61

Leaving a function

Instruction leave: restores the caller's base pointer

Example: We’'re about to return from func
Low addresses (0x80000000)

(... locals ...)

Equivalent to: Saved EBP

func's frame

e mov esp, ebp 0x8001025 k— ESP

caller's sEBP k— EBP

High addresses (Oxbfffffff)

61

Calling Conventions

e Defines
e how to pass parameters (stack, registers or both, and who is
responsible to clean them up)
e how to return values
e caller-saved or callee-saved registers
e The high-level language, the compiler, the OS, and the target
architecture all together “implement” and “agree upon” a
certain calling convention

e it's part of the ABI, the Application Binary Interface

62

Calling Conventions: cdecl (C declaration)

e Default calling convention used by most x86 C compilers
e Can be forced with the modifier cdecl
e Arguments: passed through the stack, right to left order
e Cleanup: the caller removes the parameters from the stack
after the called function completes
e Return: register EAX
o Caller-saved registers: EAX, ECX, EDX (other are callee-saved)

63

cdecl: Example

void demo_cdecl(int a, int b, int c, int z);

demo_cdecl(1l, 2, 3, 4);

push 4

push 3

push 2

push 1

call demo_cdecl
add esp, 16

64

Calling Conventions: fastcall (C declaration)

e Default calling convention used by most x86_64 C compilers

e Can be forced with the modifier fastcall

e Parameters passed in registers: rdi, rsi, rdx, rcx, r8, r9,
subsequent ones on the stack (reverse order, caller cleanup)

o Callee-saved registers: rbx, rsp, rbp, r12, ri13, r14, and r15

o Caller-saved registers (scratch): rax, rdi, rsi, rdx, rcx, r8,
r9, r10, ri11

e Return value: rax (if 128-bit: rax and rdx)

65

Linux x86-64 calling convention: Example

main:

BEEIA D int function (int a, int b) {
O FePy FP return a + b;
sub rsp, 16

mov DWORD PTR [rbp-4], edi
mov QWORD PTR [rbp-16], rsi

int main (int argc, char*x argv) {
mov esi, 2

return printf("The return value is %d\n",

di, 1
mov edi, function(1,2));

call function
mov esi, eax
mov edi, OFFSET FLAT:.LCO

mov eax, O

Low addresses

call printf

leave

ret 2
function: 1

push rbp

mov rbp, rsp Saved RBP

mov DWORD PTR [rbp-4], edi
mov DWORD PTR [rbp-8], esi
mov edx, DWORD PTR [rbp-4]
mov eax, DWORD PTR [rbp-8]
add eax, edx

pop rbp

Return address

High addresses

66

Tooling

Shell for Dummies 3

pwd

cd path

Is path

cp path_src path_dst

mv path_src path_dst
nano path/file

vim path/file

ssh user@server_addr

#root (first) directory
#your home directory
#current directory
#parent directory

#show current directory
#change directory to path

#list files in the directory at path
#copy path_src to path_dst, -r if
copying directories

#move path_src to path_dst
#opens/create file in path (ctrl+x
to exit)

#opens/create file in path (i to
edit; esc, :wq to save and quit)

#ssh to server_addr as user

scp [u@s:]p_src [u@s:]p_dst #cp to/from remote server

3cmd --help or cmd -h to get the aviable options

4

Shell for Dummies

cat file #print file to stdout

less file #visualize file better, q to quit

hexdump -Cv file #visualize raw bytes

command > file #write stdout of command to file

command >> file #append stdout of command to
file

command < file #use file as stdin of command

cmd1 | cmd2 #stdout of cmd1 as stdin cmd2

cmd ‘cmd2’

#executes cmd2 first and uses the

cmd $(cmd2) output to eval the next command
chmod +x file #give exec permission to file
grep expression #search for expr in stdin

python -c ‘emd1;cmd2;..." #executes python commands

“cmd --help or cmd -h to get the aviable options

objdump

e man objdump
objdump displays information about one or more object
files.

e —x all-headers
e —d disassemble

e -M intel intel syntax (default is AT&T)

69

Debugging: GDB

e What is GDB?
GDB is GNU Project's Debugger: allows to follow, step by
step, at assembler-level granularity, a running program, or
what a program was doing right before it crashed.®

Shttp://www.gnu.org/software/gdb/

70

Start, break and navigate the execution with gdb

e Suppose you have an executable binary and want run it
e gdb /path/to/executable loads the binary in gdb

e Now you decide to start the program with two parameters
e run 1 "abc” passes 1 via argv[1] and "abc" as argv[2]
e run ‘printf "AAAAAAAAAAAA”* (with the back ticks)
we're passing the output of the print (very useful when you
need to pass non printable characters such as raw bytes)
e Suppose you want to stop the execution at the address of a
certain instruction
e break *OxDEADBEAF places a break point at that address
e break *main+1 with debugging symbols this can be less

painful
e catch syscall block the execution when a syscall happens

71

Start, break and navigate the execution with gdb

e Now the execution stops at our break point. Here we can do
several things
e Examples:
e ni allows to procede instruction per instruction
e next 4 moves 4 lines ahead (if you have the line-numbers
information in the binary)
e si step into function
e finish run until the end of current function
e continue runs until the next break point (if any)

e To see info about the execution state:
e info registers to inspect the content of the registers
e info frame to see the values of the stack frame related to the
function where we are in
e info file print the information about the sections of the binary

72

Navigate the stack

e Suppose we're stopped somewhere in the code and want to
inspect the stack
e Some useful view of the stack is achievable with:
e x/100wx $esp prints 100 words of memory from the address
found in the ESP to ESP+100 (x = hexadecimal formatting)
e x/10wo $ebp-100 prints 10 words of memory from EBP-100
to EBP-100+10 (o = octal formatting)
e x/s $eax prints the elements pointed by EAX (s = string
formatting)
e Do you have debug symbols? (i.e., gcc -ggdb)
e print args prints info about the main parameters
e print a prints the content of variable ‘a’
e print *b prints the value pointed by ‘b’

73

Our friend gdb

e The '~ /.gdbinit’ file
Gdb is a command line tool and it supports the configuration
script as almost all the *nix software.
Some options that you may want to tune are:
e set history save on
To have the lastest commands always available also when we
re-open gdb
e set follow-fork-mode child
Allows you, if the process spawns children, to follow them and
not only wait their end.
e set disassembly-flavor [intel | att]
This option sets in which predefined syntax your disassembled
will be showed up. The default one is at&t

e Highly recommended to install pwndbg

https://github.com/pwndbg/pwndbg
74

https://github.com/pwndbg/pwndbg

GDB - How to Survive °

gdb -q program

set disassembly-flavor intel
disass *address (or f-name)

run (r)

start
runargl

run <<<arg1

vmmap

SCTRL + C to Break and Debug

#starts gdb silently for program

#sets intel syntax
#disassemble from given address

#runs the program

#runs the program and imm. stops
#runs program with arg1 in argv
#runs program with arg1 in stdin

#show memory layout

75

GDB - How to Survive ’

stepi (si)
nexti (ni)
finish (f)
continue (c)

b *address

b *address if $reg==val

del br_num

w *address
rw *address

x/numF *address

search string
p symbol

CTRL + D to Exit

#exec next inst - enters a function
#exec next inst - skips the function
#exec till next return statement
#continue exec till next break/
watch

#set software breakp at address
#set conditional breakp
#remove breakpoint br_num

#set watch for write at address
#set watch for read at address

#show num data of type F
(useful Fs are bx, wx, gx, ¢, s, i)
#search for string in memory

#print address of symbol

strace

e Intercepts and records system calls and signals
e Dumps to standard error name, argument and return value of
each system call
Useful options
e -p <pid> attach to existing process
e —f trace child process
e -0 <filename> output to file

e -e <expr> modifies which events to trace (see manpage)

7

Itrace

e Intercepts and records dynamic library calls

e Similar to strace, but at a different layer

78

Questions?

	The x86 Architecture
	Overview on the common 32-bit Intel Architecture (IA)
	Basic Instructions
	x86_64

	Program Layout and Functions
	Memory Layout
	The Stack
	Functions
	Calling Conventions

	Tooling

