
x86 Crash Course

With a focus on Linux and a glance to x86 64

Daniele Mammone, daniele.mammone@polimi.it

April 3, 2024

Based on material from Mario Polino, Armando Bellante and Lorenzo Binosi

1

The x86 Architecture

Instruction Set Architecture (ISA)

• “Logical” specification of a computer architecture

• Concerned with programming concepts

• instructions, registers, interrupts, memory architecture, . . .

• May differ (widely) from the actual microarchitecture

• Examples:

• x86 (IA-32 and x86 64)

• ARM (mobile devices)

• MIPS (embedded devices, e.g., consumer routers)

• AVR, SPARC, Power, RISC V, . . .

2

Giorgio

The x86 ISA

• Born in 1978, 16-bit ISA (Intel 8086)

• Evolved to a 32-bit ISA (1985, Intel 80386)

• Evolved to a 64-bit ISA (2003, AMD Opteron)

• CISC design (e.g., string operations)

• Many legacy features (e.g, segmentation)

• We’ll see the basics of the “core” ISA

• There is also the floating point unit, processor-specific

features, and extensions such as SIMD (MMX, SSE, SSE2)

with their own instructions and registers1

1Complete reference: Intel Software Developer’s Manual, about 5,000 pages

(https://software.intel.com/en-us/articles/intel-sdm)

3

https://software.intel.com/en-us/articles/intel-sdm
Giorgio

Von Neumann Architecture

RAX

RBX

RCX

RDX

RSI

RDI

RIP

I/O Interface

Keybord/Video

BU
S Data

Address
Control

Memory
(RAM)CPU

4

Memory

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

E8 FF FF FF E0 FF FF FF D8 FF FF FF D0 FF FF FF

50 20 40 80 60 20 40 80 70 20 40 80 80 20 40 80

48 65 6C 6C 6F 20 77 6F 72 6C 64 00 00 00 00 00

’H’ ’e’ ’l’ ’l’ ’o’ ’ ’ ’w’ ’o’ ’r’ ’l’ ’d’ 00 00 00 00 00

0 1 2 3 4 5 6 7 8 9 A B C D E F

0x8040204...

0x8040203...

0x8040202...

0x8040201...

0x8040200...

5

IA-32: Registers

• General-purpose registers

• EAX, EBX, ECX, EDX

• ESI, EDI (source and destination

index for string operations)

• EBP (base pointer)

• ESP (stack pointer)

• Instruction pointer: EIP

• No explicit access

• Modified by jmp, call, ret

• Read through the stack (saved IP)

• Program status and control: EFLAGS

• (segment registers)

6

Giorgio

Giorgio

Giorgio

Giorgio

Giorgio

IA-32: EFLAGS register

• 32-bits register, boolean flags

• Program status: overflow, sign, zero, auxiliary carry (BCD),
parity, carry

• Indicate the result of arithmetic instructions

• Extremely important for control flow

• Program control: direction flag

• controls string instructions (auto-increment or auto-decrement)

• System: control operating-system operations

7

IA-32: EFLAGS register

8

Fundamental data types

byte 8 bits

word 2 bytes

dword Doubleword, 4 bytes (32 bits)

qword Quadword, 8 bytes (64 bits)

9

Assembly and Machine Code

Assembly language: specific to each ISA, mapped to binary code

int main() {
 int n = 10;
 return n + fun();
}

push ebp
mov ebp, esp
mov ebx, 10
call fun
add eax, ebx
leave
ret

55
89 E5
BB 0A 00 00 00
E8 FC FF FF FF
01 D8
C9
E3

compiler assembler

disassemblerdecompiler

gcc, clang as

objdump, IDA, binary ninja, …IDA’s hex-rays, ghidra, ...

≠ ≠
reverse

engineering

For simplicity, we don’t deal with the linking process.

10

Assembly: Syntax

Two main syntaxes:

• Intel: default in most Windows programs (e.g., IDA)

• AT&T: default in most UNIX tools (e.g., gdb, objdump)

Beware: The order of the operands is different

We will use the Intel syntax

11

Assembly: Syntax

move the value 0 to EAX

Intel AT&T

mov eax, 0h movl $0x0,%eax

move the value 0 to the address contained in EBX+4

Intel AT&T

mov [ebx+4h],0h movl $0x0,0x4(%ebx)

12

x86: data movement

Examples

Immediate to register:

mov eax, 4h EAX = 4

Register to register:

mov eax, ebx EAX = EBX

Memory to register (and register to memory):

mov eax, [ebx] EAX = *EBX

mov eax, [ebx + 4h] EAX = *(EBC + 4)

mov eax, [edx + ebx*4 + 8] EAX = *(EDX + EBX * 4 + 8)

Note: memory to memory is an invalid combination2

2Except in some instructions, such as movs (move from string to string).

13

x86 Assembly and Machine Code

Instruction = opcode + operand

Example

mov ebp, esp 89 E5

mov bl, 10 B3 0A

mov bx, 10 66 BB 0A 00

mov ebx, 10 BB 0A 00 00 00

prefix + opcode (1-3 bytes) operands

10

ebp, espmov r/m r

mov bl

size prefix

mov ebx

Beware: in x86, instructions have variable length.

14

Basic instructions

• Data Transfer: mov, push, pop, xchg, lea

• Integer Arithmetic: add, sub, mul, imul, div, idiv, inc,

dec

• Logical: and, or, not, xor

• Control Transfer: jmp, jne, call, ret

• and lots more. . .

15

Data Transfer: mov

• mov destination, source

source: immediate, register, memory location

destination: register or memory location

• Basic load/store operations

• Register to register, register to memory, immediate to register,

immediate to memory

• Memory to memory is INVALID (in every instruction)

Examples

MOV eax, ebx MOV eax, FFFFFFFFh MOV ax, bx

MOV [eax],ecx MOV [eax],[ecx] NO!!! MOV al, FFh

16

Integer Arithmetics: add and sub

add destination, source sub destination, source

dest ← dest + source dest ← dest − source

• Addressing:

source: immediate, register, memory location

destination: register or memory location

(the destination has to be at least as large as the source)

• Negate a value: neg [op]

• Bitwise operations: and, or, xor, not work similarly

Examples

add esp, 44h add edx, cx add al, dh

sub esp, 33h sub eax, ebx sub [eax], 1h

17

Integer Arithmetics: unsigned multiply (mul)

• mul source

source: register or memory location

• dest ← implied op × source
• Implied operands according to the size of source

• First operand: AL, AX, or EAX

• Destination: AX, DX:AX, EDX:EAX (double the size of source)

• Signed multiply: imul

Example

• mul ebx: EDX:EAX ← EAX * EBX

• most significant bits of the result in EDX

• least significant bits of the result in EAX

• mul cx: DX:AX ← AX * CX

• mul cl: AX ← AL * CL

18

Integer Arithmetics: unsigned divide (div)

• div source

source: register or a memory location

• Computes quotient and remainder

• Implied operand: EDX:EAX (according to the size of source)

• Signed divide: idiv

Examples

• div ebx (4 bytes)

• EAX ← EDX:EAX / EBX

• EDX ← EDX:EAX % EBX

• div bx (2 bytes)

• AX ← DX:AX / BX DX = DX:AX % BX

• div bl (1 byte)

• AL ← AX / BX AH = AX % BX

19

Integer Arithmetics: cmp and test

cmp op1, op2 test op1, op2

Computes op1 − op2 Computes op1 & op2

• Sets the flags (ZF,CF, OF, . . .)

• Discards the result

Examples

cmp eax, ebx cmp eax, 44BBCCDDh cmp al, dh

cmp al, 44h cmp ax,FFFFh cmp [eax],4h

20

Control-Flow Instructions: conditional jumps

j<cc> address or offset

Jump to address if and only if a certain condition is verified

Program Instruction

cmp eax, ebx

Instruction (jump not taken)0x080483a3

0x080483a1

0x0804839c

Instruction (if jump taken)0x080483ad

jz 0x080483ad

if ZeroFlag == 1

if ZeroFlag == 0

<cc>: condition

• O,NO,S,NS,E,Z,NE, . . .

• based on one or more status flags

of EFLAGS

Examples:

• jz = jump if zero

• jg = jump if greater than

• jlt = jump if less than

Reference: http://www.unixwiz.

net/techtips/x86-jumps.html
21

http://www.unixwiz.net/techtips/x86-jumps.html
http://www.unixwiz.net/techtips/x86-jumps.html

Control-Flow Instructions: unconditional jump jmp

Program Instruction

jmp 0x080483ad

Instruction never executed0x080483a3

0x080483a1

0x080483a0

Other Block Instruction0x080483ad

• jmp address or offset

• Unconditional jump: just set the

EIP to address

• Can be also relative: increment or

decrement EIP by an offset

22

Exercise 1

Translate the following C code in assembly x86. Assume EBX ←
b, ECX ← c. Finally, a goes in EAX.

if (c == 0)

a = b;

else

a = -b;

23

Solution

mov edx, 0

cmp ecx, edx

jne ELSE

mov eax, ebx

jmp ENDIF

ELSE:

mov eax, 0

sub eax, ebx

ENDIF:

nop

...

24

Exercise 2

Translate the following C code in assembly x86. The variable a

goes in EAX.

a = 0;

for(i = 0; i < 10; i++)

a += i;

25

Solution

mov eax, 0

mov ebx, 0

mov ecx, 10

LOOP:

cmp ebx, ecx

jge END

add eax, ebx

inc ebx

jmp LOOP

END:

nop

...

26

A very simple example (what does it do?)

Assume that the input is in registers: ECX and EDX; output: EAX

mov eax, ecx

mov ebx, edx

cmp ebx, 0

jz LABEL

LOOP:

cmp ebx, 1

jle RET

mul ecx

sub ebx, 1

jmp LOOP

LABEL:

mov eax, 1

RET:

...

27

Load effective address (lea)

• lea destination, source

source: memory location

destination: register

• Like a mov, but it is storing the pointer, not the value

• It does NOT access memory

Example

0x00000000

0x00403A40

EAX

EBX

0x7C81776F

0x7C911000

0x0012C140

0x7FFDB000

0x00403A40

0x00403A44

0x00403A48

0x00403A4C

MemoryRegisters

...

lea eax, [ebx + 8] → EAX = 0x00403A48

N.B.: with mov eax, [ebx+8] → EAX = 0x0012C140
28

Basic Instructions: nop

• nop = No Operation. Just move to next instruction.

• The opcode is pretty famous and is 0x90

• Really useful in exploitation (we will see!)

29

Interrupts and Syscalls

• int value

• value: software interrupt number to generate (0-255)

• Every OS has its set of interrupt numbers (e.g., 80h for Linux

system calls)

• syscall used for Linux 64-bit

• sysenter used by Microsoft Windows

30

The x86 64 ISA

RIP

RAX

RFLAGS

071531

EAX AX
AH AL

BX
BH BL

CX
CH CL

DX
DH DL

SI
SIL

...

RBX

RCX

RDX

RSI

EBX

ECX

EDX

ESI

DI
DIL

RDI EDI

SPRSP ESP

BPRBP EBP

R8 R8D R8W
R8L

R15 R15D R15W
R15L

EIP EFLAGS

63

SPL

BPL

07153163

31

Endianness

Endianness: convention that specifies in which order the bytes of

a data word are lined up sequentially in memory.

Big-endian (left)

Systems in which the most significant

byte of the word is stored in the

smallest address given.
0D

0A

0B

0C

...
...

a+3:

a+2:

a+1:

a:

Memory

Register

Big-endian

0A0B0C0D

Little-endian

0A

0D

0C

0B

...
...

a+3:

a+2:

a+1:

a:

Memory0A0B0C0D

Register

Little-endian

Systems in which the least significant

byte is stored in the smallest address.

IA-32 is “little endian”.

32

Program Layout and Functions

How an executable is mapped to memory in Linux (ELF)

Executable Description

.plt This section holds stubs which are responsible of

external functions linking.

.text This section holds the ”text,” or executable instructions, of a program.

.rodata This section holds read-only data that contribute to

the program’s memory image

.data This section holds initialized data that contribute to

the program’s memory image

.bss This section holds uninitialized data that contributes to the program’s memory image.

By definition, the system initializes the data with zeros when the program begins to run.

.debug This section holds information symbolic debugging.

.init This section holds executable instructions that contribute to the process initialization code.

That is, when a program starts to run, the system arranges to execute the code in this

section before calling the main program entry point (called main for C programs).

.got This section holds the global offset table.

33

Simplified program memory layout

Low addresses (0x80000000)

Shared libraries

.text

.bss

Heap (grows ↓)

. . .

Stack (grows ↑)

env

argv

High addresses (0xbfffffff)

34

The Stack

• LIFO (last in first out) data structure

• Used to manage functions

• local variables

• return addresses

• ...

• Handled through the register ESP (stack pointer)

• Remember: the stack grows toward lower addresses

(downward the address space)

35

Stack Management Instructions: push

push immediate or register

Stores the immediate or register value at the top of the stack and

decrements the ESP of the operand size

Example

Initial condition: EAX = 30

push eax

is equivalent to:

sub esp, 4

mov DWORD PTR [esp], eax

Low addresses (0x80000000)

...

100 ESP

...

High addresses (0xbfffffff)

36

Stack Management Instructions: push

push immediate or register

Stores the immediate or register value at the top of the stack and

decrements the ESP of the operand size

Example

Initial condition: EAX = 30

push eax

is equivalent to:

sub esp, 4

mov DWORD PTR [esp], eax

Low addresses (0x80000000)

...

ESP

100

...

High addresses (0xbfffffff)

36

Stack Management Instructions: push

push immediate or register

Stores the immediate or register value at the top of the stack and

decrements the ESP of the operand size

Example

Final condition: EAX = 30

push eax

is equivalent to:

sub esp, 4

mov DWORD PTR [esp], eax

Low addresses (0x80000000)

...

30 ESP

100

...

High addresses (0xbfffffff)

36

Stack Management Instructions: pop

pop destination

Loads to the destination a word off the top of the stack, then it

increases ESP of the operand’s size.

Example

Initial condition: EAX = ???

pop eax

is equivalent to:

mov eax, DWORD PTR [esp]

add esp, 4

Low addresses (0x80000000)

...

30 ESP

100

...

High addresses (0xbfffffff)

37

Stack Management Instructions: pop

pop destination

Loads to the destination a word off the top of the stack, then it

increases ESP of the operand’s size.

Example

Initial condition: EAX = 30

pop eax

is equivalent to:

mov eax, DWORD PTR [esp]

add esp, 4

Low addresses (0x80000000)

...

30 ESP

100

...

High addresses (0xbfffffff)

37

Stack Management Instructions: pop

pop destination

Loads to the destination a word off the top of the stack, then it

increases ESP of the operand’s size.

Example

Final condition: EAX = 30

pop eax

is equivalent to:

mov eax, DWORD PTR [esp]

add esp, 4

Low addresses (0x80000000)

...

30

100 ESP

...

High addresses (0xbfffffff)

37

Calling a function

Instruction call:

• Push to the stack the address of the next instruction

• Move the address of the first instruction of the callee into EIP

Example: Let’s call func, located at 0x800bff00

Equivalent to:

• push address(of the

instruction after

the call!)

• jmp func

(reminder: we can’t read or

set EIP directly!)

Low addresses (0x80000000)

...

Stack top ESP

...

High addresses (0xbfffffff)

EIP = 0x8001020
38

Calling a function

Instruction call:

• Push to the stack the address of the next instruction

• Move the address of the first instruction of the callee into EIP

Example: Let’s call func, located at 0x800bff00

Equivalent to:

• push address(of the

instruction after

the call!)

• jmp func

(reminder: we can’t read or

set EIP directly!)

Low addresses (0x80000000)

...

0x8001025 ESP

Stack top

...

High addresses (0xbfffffff)

EIP = 0x8001020
38

Calling a function

Instruction call:

• Push to the stack the address of the next instruction

• Move the address of the first instruction of the callee into EIP

Example: Let’s call func, located at 0x800bff00

Equivalent to:

• push address(of the

instruction after

the call!)

• jmp func

(reminder: we can’t read or

set EIP directly!)

Low addresses (0x80000000)

...

0x8001025 ESP

Stack top

...

High addresses (0xbfffffff)

EIP = 0x800bff00
38

Returning from a function

Instruction ret:

• Restores the return address saved by call from the top of the

stack

Example: let’s return from func

Equivalent to:

• pop eip

(reminde: we can’t read or set

EIP directly!)

Low addresses (0x80000000)

...

0x8001025 ESP

Stack top

...

High addresses (0xbfffffff)

EIP = 0x800bff00
39

Returning from a function

Instruction ret:

• Restores the return address saved by call from the top of the

stack

Example: let’s return from func

Equivalent to:

• pop eip

(reminde: we can’t read or set

EIP directly!)

Low addresses (0x80000000)

...

Stack top ESP

...

High addresses (0xbfffffff)

EIP = 0x8001025
39

Functions and Stack Frames

At the beginning of a

function, the function itself

must reserve space for its

local variables.

void foo() {

int a;

int b;

int c;

b = 0;

}

Low addresses (0x80000000)

...

Return addr (sEIP) ESP

...

High addresses (0xbfffffff)

40

Functions and Stack Frames

At the beginning of a

function, the function itself

must reserve space for its

local variables.

FOO:

mov ebp, esp

sub esp, 0xc

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

Low addresses (0x80000000)

...

Return addr (sEIP) ESP

...

High addresses (0xbfffffff)

41

Functions and Stack Frames

At the beginning of a

function, the function itself

must reserve space for its

local variables.

FOO:

mov ebp, esp ←
sub esp, 0xc

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

Low addresses (0x80000000)

...

Return addr (sEIP) ESP, EBP

...

High addresses (0xbfffffff)

42

Functions and Stack Frames

At the beginning of a

function, the function itself

must reserve space for its

local variables.

FOO:

mov ebp, esp

sub esp, 0xc ←
mov [ebp - 0x8], 0x0

add esp, 0xc

ret

Low addresses (0x80000000)

...

(a) ESP

(b)

(c)

Return addr (sEIP) EBP

...

High addresses (0xbfffffff)

43

Functions and Stack Frames

At the beginning of a

function, the function itself

must reserve space for its

local variables.

FOO:

mov ebp, esp

sub esp, 0xc

mov [ebp - 0x8], 0x0 ←
add esp, 0xc

ret

Low addresses (0x80000000)

...

(a) ESP

0 (b)

(c)

Return addr (sEIP) EBP

...

High addresses (0xbfffffff)

44

Functions and Stack Frames

At the beginning of a

function, the function itself

must reserve space for its

local variables.

FOO:

mov ebp, esp

sub esp, 0xc

mov [ebp - 0x8], 0x0

add esp, 0xc ←
ret

Low addresses (0x80000000)

...

0

Return addr (sEIP) ESP, EBP

...

High addresses (0xbfffffff)

45

Functions and Stack Frames

At the beginning of a

function, the function itself

must reserve space for its

local variables.

FOO:

mov ebp, esp

sub esp, 0xc

mov [ebp - 0x8], 0x0

add esp, 0xc

ret ←

Low addresses (0x80000000)

...

0

Return addr (sEIP) EBP

...
ESP

High addresses (0xbfffffff)

46

Functions and Stack Frames

That works!!! But what if foo calls bar.

void foo() {

int a;

int b;

int c;

bar();

b = 0;

}

void bar() {

int d;

d = 1;

}

47

Functions and Stack Frames

FOO:

mov ebp, esp

sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1

add esp, 0x4

ret

Low addresses (0x80000000)

...

Return addr (sEIP) ESP

...

High addresses (0xbfffffff)

48

Functions and Stack Frames

FOO:

mov ebp, esp ←
sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1

add esp, 0x4

ret

Low addresses (0x80000000)

...

Return addr (sEIP) ESP, EBP

...

High addresses (0xbfffffff)

49

Functions and Stack Frames

FOO:

mov ebp, esp

sub esp, 0xc ←
call BAR

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1

add esp, 0x4

ret

Low addresses (0x80000000)

...

(a) ESP

(b)

(c)

Return addr (sEIP) EBP

...

High addresses (0xbfffffff)

50

Functions and Stack Frames

FOO:

mov ebp, esp

sub esp, 0xc

call BAR ←
mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1

add esp, 0x4

ret

Low addresses (0x80000000)

...

foo ret addr (sEIP) ESP

(a)

(b)

(c)

Return addr (sEIP) EBP

...

High addresses (0xbfffffff)

51

Functions and Stack Frames

FOO:

mov ebp, esp

sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp ←
sub esp, 0x4

mov [ebp - 0x4], 0x1

add esp, 0x4

ret

Low addresses (0x80000000)

...

foo ret addr (sEIP) ESP, EBP

(a)

(b)

(c)

Return addr (sEIP)

...

High addresses (0xbfffffff)

52

Functions and Stack Frames

FOO:

mov ebp, esp

sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4 ←
mov [ebp - 0x4], 0x1

add esp, 0x4

ret

Low addresses (0x80000000)

...

(d) ESP

foo ret addr (sEIP) EBP

(a)

(b)

(c)

Return addr (sEIP)

...

High addresses (0xbfffffff)

53

Functions and Stack Frames

FOO:

mov ebp, esp

sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1 ←
add esp, 0x4

ret

Low addresses (0x80000000)

...

1 (d) ESP

foo ret addr (sEIP) EBP

(a)

(b)

(c)

Return addr (sEIP)

...

High addresses (0xbfffffff)

54

Functions and Stack Frames

FOO:

mov ebp, esp

sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1

add esp, 0x4 ←
ret

Low addresses (0x80000000)

...

1

foo ret addr (sEIP) ESP, EBP

(a)

(b)

(c)

Return addr (sEIP)

...

High addresses (0xbfffffff)

55

Functions and Stack Frames

FOO:

mov ebp, esp

sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0

add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1

add esp, 0x4

ret ←

Low addresses (0x80000000)

...

1

foo ret addr (sEIP) EBP

(a) ESP

(b)

(c)

Return addr (sEIP)

...

High addresses (0xbfffffff)

56

Functions and Stack Frames

Wrong memory access!!! EBP

changed and we lost the old

value!

FOO:

mov ebp, esp

sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0 ←
add esp, 0xc

ret

BAR:

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1

add esp, 0x4

ret

Low addresses (0x80000000)

...

0

1

foo ret addr (sEIP) EBP

(a) ESP

(b)

(c)

Return addr (sEIP)

...

High addresses (0xbfffffff)
57

Functions and Stack Frames

Redacted!

FOO:

push ebp

mov ebp, esp

sub esp, 0xc

call BAR

mov [ebp - 0x8], 0x0

leave

ret

BAR:

push ebp

mov ebp, esp

sub esp, 0x4

mov [ebp - 0x4], 0x1

leave

ret

58

Functions and Stack Frames

• Stack frame = stack area

allocated to a function

• EBP register: pointer to

the beginning (base) of a

function’s frame

• At the beginning of a
function:

• Save EBP to stack

• Set EBP to the address

of the function’s frame

Low addresses (0x80000000)

...

Local variables ESP

Saved EBP EBP

ca
lle
e’
s
fr
am

e

Return addr (sEIP)

Arguments

Local variables

Saved EBP

ca
lle
r’
s
fr
am

e

Return addr (sEIP)

...

High addresses (0xbfffffff)

59

Entering a function

Example: We’ve just called func, located at 0x800bff00

Setup the stack frame

• push ebp

• mov ebp, esp

Low addresses (0x80000000)

...

0x8001025 ESP

f
u
n
c
’s

fr
am

e

. . .

caller’s sEBP EBP

...

High addresses (0xbfffffff)

60

Entering a function

Example: We’ve just called func, located at 0x800bff00

Setup the stack frame

• push ebp

• mov ebp, esp

Low addresses (0x80000000)

...

Saved EBP ESP

0x8001025

f
u
n
c
’s

fr
am

e

. . .

caller’s sEBP EBP

...

High addresses (0xbfffffff)

60

Entering a function

Example: We’ve just called func, located at 0x800bff00

Setup the stack frame

• push ebp

• mov ebp, esp

Low addresses (0x80000000)

...

Saved EBP ESP
EBP

0x8001025

f
u
n
c
’s

fr
am

e

. . .

caller’s sEBP

...

High addresses (0xbfffffff)

60

Leaving a function

Instruction leave: restores the caller’s base pointer

Example: We’re about to return from func

Equivalent to:

• mov esp, ebp

• pop ebp

Low addresses (0x80000000)

...

(... locals ...) ESP

Saved EBP EBP

0x8001025f
u
n
c
’s

fr
am

e

. . .

caller’s sEBP

...

High addresses (0xbfffffff)

61

Leaving a function

Instruction leave: restores the caller’s base pointer

Example: We’re about to return from func

Equivalent to:

• mov esp, ebp

• pop ebp

Low addresses (0x80000000)

...

(... locals ...)

Saved EBP EBP
ESP

0x8001025f
u
n
c
’s

fr
am

e

. . .

caller’s sEBP

...

High addresses (0xbfffffff)

61

Leaving a function

Instruction leave: restores the caller’s base pointer

Example: We’re about to return from func

Equivalent to:

• mov esp, ebp

• pop ebp

Low addresses (0x80000000)

...

(... locals ...)

Saved EBP

0x8001025 ESPf
u
n
c
’s

fr
am

e

. . .

caller’s sEBP EBP

...

High addresses (0xbfffffff)

61

Calling Conventions

• Defines

• how to pass parameters (stack, registers or both, and who is

responsible to clean them up)

• how to return values

• caller-saved or callee-saved registers

• The high-level language, the compiler, the OS, and the target
architecture all together “implement” and “agree upon” a
certain calling convention

• it’s part of the ABI, the Application Binary Interface

62

Calling Conventions: cdecl (C declaration)

• Default calling convention used by most x86 C compilers

• Can be forced with the modifier cdecl

• Arguments: passed through the stack, right to left order

• Cleanup: the caller removes the parameters from the stack

after the called function completes

• Return: register EAX

• Caller-saved registers: EAX, ECX, EDX (other are callee-saved)

63

cdecl: Example

void demo_cdecl(int a, int b, int c, int z);

//...

demo_cdecl(1, 2, 3, 4); //calling

; ...

push 4 ; push last parameter value

push 3 ; push third parameter value

push 2 ; ...

push 1

call demo_cdecl ; call the subroutine

add esp, 16 ; clean up the stack

64

Calling Conventions: fastcall (C declaration)

• Default calling convention used by most x86 64 C compilers

• Can be forced with the modifier fastcall

• Parameters passed in registers: rdi, rsi, rdx, rcx, r8, r9,

subsequent ones on the stack (reverse order, caller cleanup)

• Callee-saved registers: rbx, rsp, rbp, r12, r13, r14, and r15

• Caller-saved registers (scratch): rax, rdi, rsi, rdx, rcx, r8,

r9, r10, r11

• Return value: rax (if 128-bit: rax and rdx)

65

Linux x86-64 calling convention: Example

main:

push rbp

mov rbp, rsp

sub rsp, 16

mov DWORD PTR [rbp-4], edi

mov QWORD PTR [rbp-16], rsi

mov esi, 2 ; Second parameter

mov edi, 1 ; First parameter

call function

mov esi, eax ; Return value -> first param

mov edi, OFFSET FLAT:.LC0 ; "The return ...

mov eax, 0

call printf

leave

ret

function:

push rbp

mov rbp, rsp

mov DWORD PTR [rbp-4], edi

mov DWORD PTR [rbp-8], esi

mov edx, DWORD PTR [rbp-4]

mov eax, DWORD PTR [rbp-8]

add eax, edx

pop rbp

ret

int function (int a, int b) {

return a + b;

}

int main (int argc, char** argv) {

return printf("The return value is %d\n",

function(1,2));

}

Low addresses

...

2

1

Saved RBP

Return address

...

High addresses

66

Tooling

Shell for Dummies 3

important paths

/
~/
.
..

#root (first) directory
#your home directory
#current directory
#parent directory

filesystem utils

pwd
cd path
ls path
cp path_src path_dst

mv path_src path_dst

#show current directory
#change directory to path
#list files in the directory at path
#copy path_src to path_dst, -r if
copying directories
#move path_src to path_dst

basic text editor

nano path/file

vim path/file

#opens/create file in path (ctrl+x
to exit)
#opens/create file in path (i to
edit; esc, :wq to save and quit)

remote actions ssh user@server_addr
scp [u@s:]p_src [u@s:]p_dst

#ssh to server_addr as user
#cp to/from remote server

3cmd --help or cmd -h to get the aviable options
67

Shell for Dummies 4

file visualization
cat file
less file
hexdump -Cv file

#print file to stdout
#visualize file better, q to quit
#visualize raw bytes

redirections

command > file
command >> file

command < file
cmd1 | cmd2

#write stdout of command to file
#append stdout of command to
file
#use file as stdin of command
#stdout of cmd1 as stdin cmd2

argv from command
cmd `cmd2`

cmd $(cmd2)

#executes cmd2 first and uses the
output to eval the next command

other useful
commands

chmod +x file
grep expression
python -c ‘cmd1;cmd2;…’

#give exec permission to file
#search for expr in stdin
#executes python commands

4cmd --help or cmd -h to get the aviable options
68

objdump

• man objdump

objdump displays information about one or more object

files.

• -x all-headers

• -d disassemble

• -M intel intel syntax (default is AT&T)

69

Debugging: GDB

• What is GDB?

GDB is GNU Project’s Debugger: allows to follow, step by

step, at assembler-level granularity, a running program, or

what a program was doing right before it crashed.5

5http://www.gnu.org/software/gdb/

70

Start, break and navigate the execution with gdb

• Suppose you have an executable binary and want run it

• gdb /path/to/executable loads the binary in gdb

• Now you decide to start the program with two parameters

• run 1 ”abc” passes 1 via argv[1] and "abc" as argv[2]

• run ‘printf ”AAAAAAAAAAAA”‘ (with the back ticks)

we’re passing the output of the print (very useful when you

need to pass non printable characters such as raw bytes)

• Suppose you want to stop the execution at the address of a
certain instruction

• break *0xDEADBEAF places a break point at that address

• break *main+1 with debugging symbols this can be less

painful

• catch syscall block the execution when a syscall happens

71

Start, break and navigate the execution with gdb

• Now the execution stops at our break point. Here we can do

several things

• Examples:

• ni allows to procede instruction per instruction

• next 4 moves 4 lines ahead (if you have the line-numbers

information in the binary)

• si step into function

• finish run until the end of current function

• continue runs until the next break point (if any)

• To see info about the execution state:

• info registers to inspect the content of the registers

• info frame to see the values of the stack frame related to the

function where we are in

• info file print the information about the sections of the binary

72

Navigate the stack

• Suppose we’re stopped somewhere in the code and want to

inspect the stack

• Some useful view of the stack is achievable with:

• x/100wx $esp prints 100 words of memory from the address

found in the ESP to ESP+100 (x = hexadecimal formatting)

• x/10wo $ebp-100 prints 10 words of memory from EBP-100

to EBP-100+10 (o = octal formatting)

• x/s $eax prints the elements pointed by EAX (s = string

formatting)

• Do you have debug symbols? (i.e., gcc -ggdb)

• print args prints info about the main parameters

• print a prints the content of variable ‘a’

• print *b prints the value pointed by ‘b’

73

Our friend gdb

• The ’∼/.gdbinit’ file
Gdb is a command line tool and it supports the configuration

script as almost all the *nix software.
Some options that you may want to tune are:

• set history save on

To have the lastest commands always available also when we

re-open gdb

• set follow-fork-mode child

Allows you, if the process spawns children, to follow them and

not only wait their end.

• set disassembly-flavor [intel | att]

This option sets in which predefined syntax your disassembled

will be showed up. The default one is at&t

• Highly recommended to install pwndbg

https://github.com/pwndbg/pwndbg

74

https://github.com/pwndbg/pwndbg

GDB - How to Survive 6

start gdb -q program #starts gdb silently for program

disassemble set disassembly-flavor intel
disass *address (or f-name)

#sets intel syntax
#disassemble from given address

run program

run (r)
start
run arg1
run <<< arg1

#runs the program
#runs the program and imm. stops
#runs program with arg1 in argv
#runs program with arg1 in stdin

memory layout vmmap #show memory layout

6CTRL + C to Break and Debug
75

GDB - How to Survive 7

execution

stepi (si)
nexti (ni)
finish (f)
continue (c)

#exec next inst - enters a function
#exec next inst - skips the function
#exec till next return statement
#continue exec till next break/
watch

breakpoinits
b *address
b *address if $reg==val
del br_num

#set software breakp at address
#set conditional breakp
#remove breakpoint br_num

watchpoints w *address
rw *address

#set watch for write at address
#set watch for read at address

examine
x/numF *address
search string
p symbol

#show num data of type F
(useful Fs are bx, wx, gx, c, s, i)
#search for string in memory

#print address of symbol

7CTRL + D to Exit
76

strace

• Intercepts and records system calls and signals

• Dumps to standard error name, argument and return value of

each system call

Useful options

• -p <pid> attach to existing process

• -f trace child process

• -o <filename> output to file

• -e <expr> modifies which events to trace (see manpage)

77

ltrace

• Intercepts and records dynamic library calls

• Similar to strace, but at a different layer

78

Questions?

78

	The x86 Architecture
	Overview on the common 32-bit Intel Architecture (IA)
	Basic Instructions
	x86_64

	Program Layout and Functions
	Memory Layout
	The Stack
	Functions
	Calling Conventions

	Tooling

