
10103 - The Maximum likelihood approach

Identification of ARMA/ARMAX models

For an ARMA/ARMAX model we consider a model class defined as :
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NowY(tIt-1 , 8) YT(t)8 non-linear optimization problem

We need an iterative umerical approach
- we initialize the algorith with an initial guessa
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- we define an update rune : With = g(0(7) .

The sequence of the estimates should converge To
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We have Two problems :

1) Update rule

2) multiple minima many local optiumw
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Problem of Local optical
Iterative algorithms are guaranteed to converge To a local minimum
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notTo the global one.
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How To update D(i) ? We can use the the Newton parabola method
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looking at the gradient,
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Compriation of the gradient and the Messian Matrix

Jn (8) = [ [Stlt-1 ,
8)"we derive itRemembering That Scalar

Vector Vector

Nt](tlt :YECtlttlgradient:

Hessian : Nett
remove this because
could be negative

=End(tt- ,
) ((titl +Yettt
Square = 0 (always

We remove the secondTerm To be sure to have a paraboloid with a minium (and not a maximum 7

Newton's Law (update rulefor 82

aliti = g(i) _ [E(t(t - ,)CtIt-TECtIt-let- &(i)

we need :

· d(tIt-
,
04) = y(t) - j(t)t- 1

,
&(i) No need To further job , everything is in the data

·(tlti



Comprationo-C ... n ]T the set of model parameters ,
we compute the prediction error
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Remark : The Newton'srule is one of the possible way To solve this monlinear optimization problem that Takes

advantage of the computation of the gradient and the second derivative of the cost

- Newton's Rule git]g(i) - [HessianJ. gradient
- gradient descent : O(it)

_
&(i) -

12. gradient 2) scalar and fixed (Step Size]

- quasi-Newton's rule :
Qiti) - &(i) - [approximate Hessian] "gradient

like when we have removed the last piece from the Messian; This is what we do! computationally

lighter Than Newton's
,

still more accurate but slower Than GD


