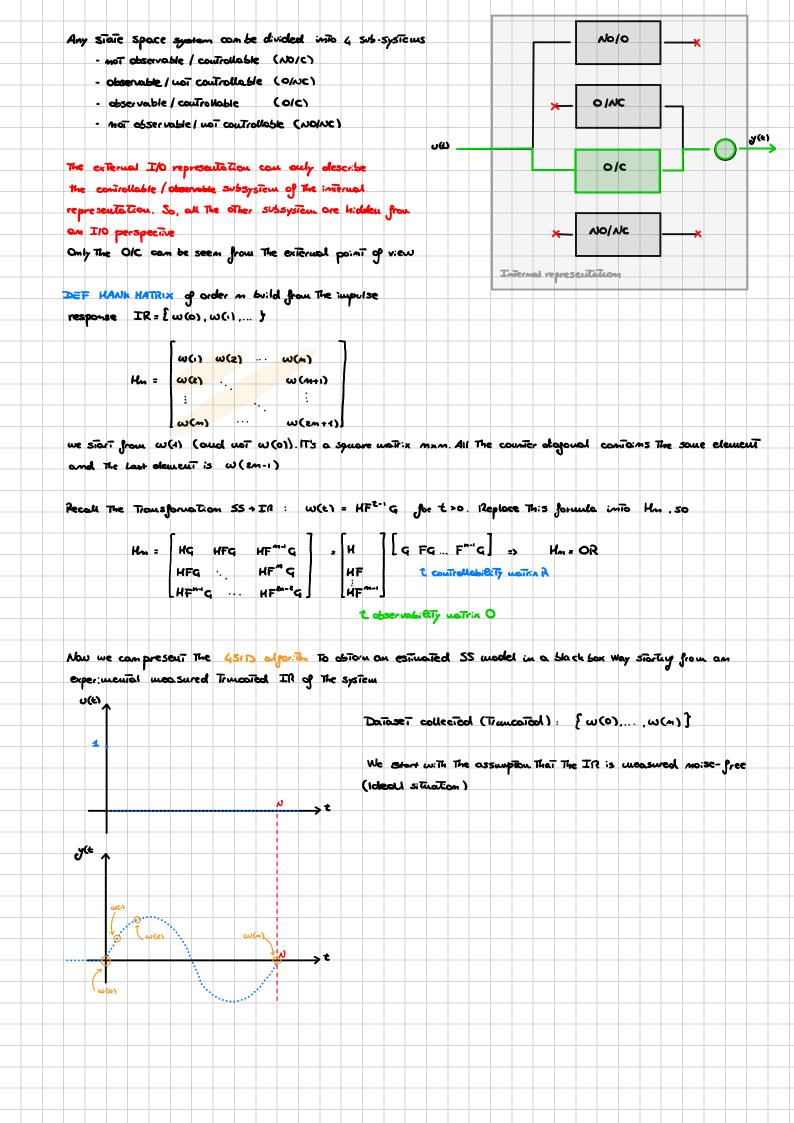
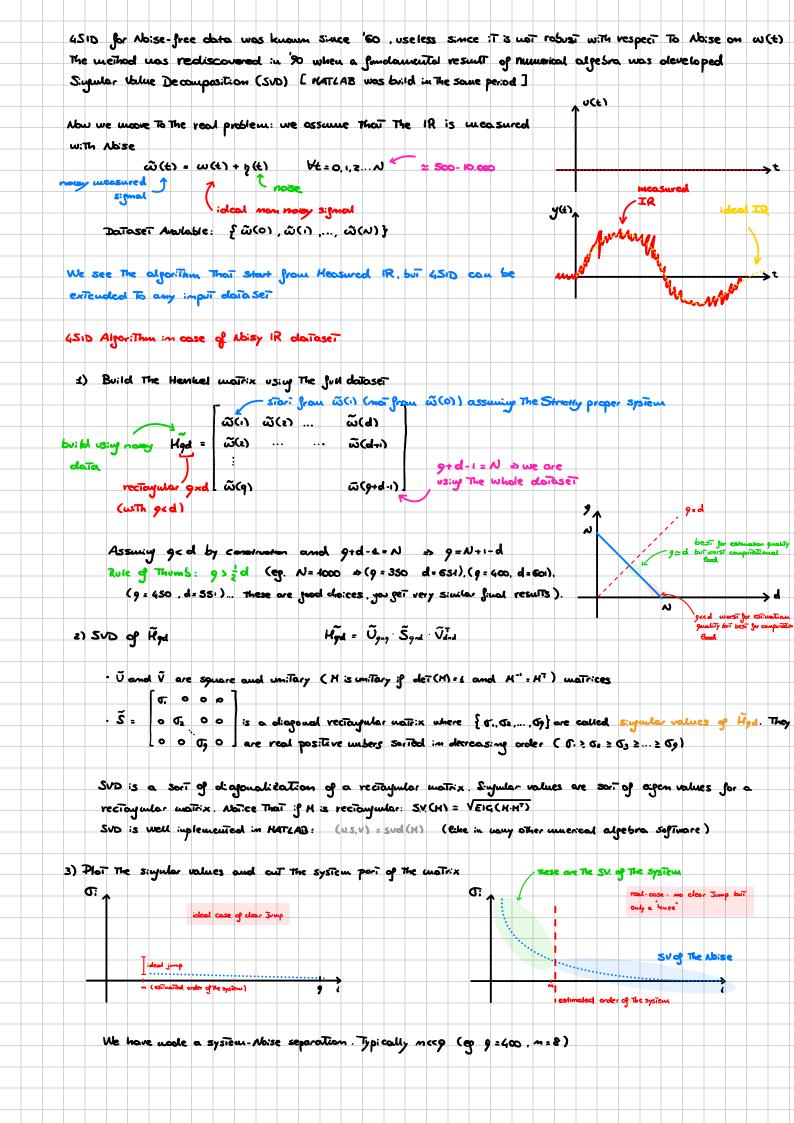
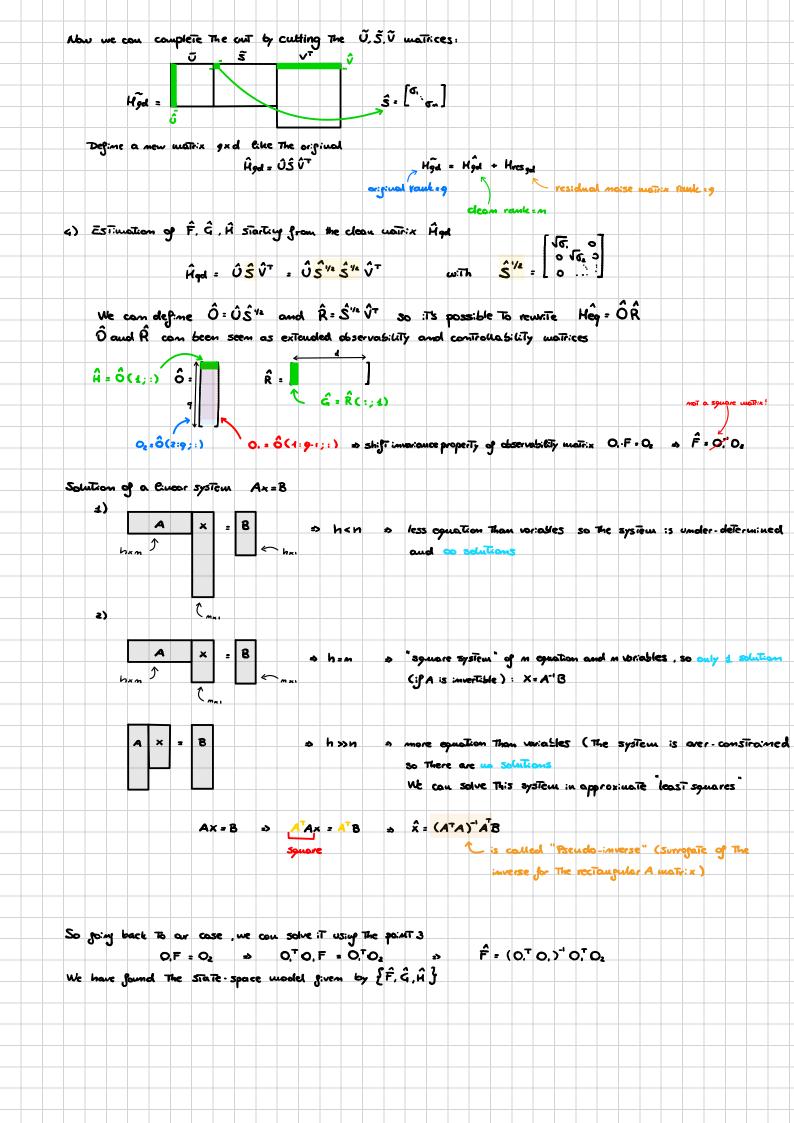
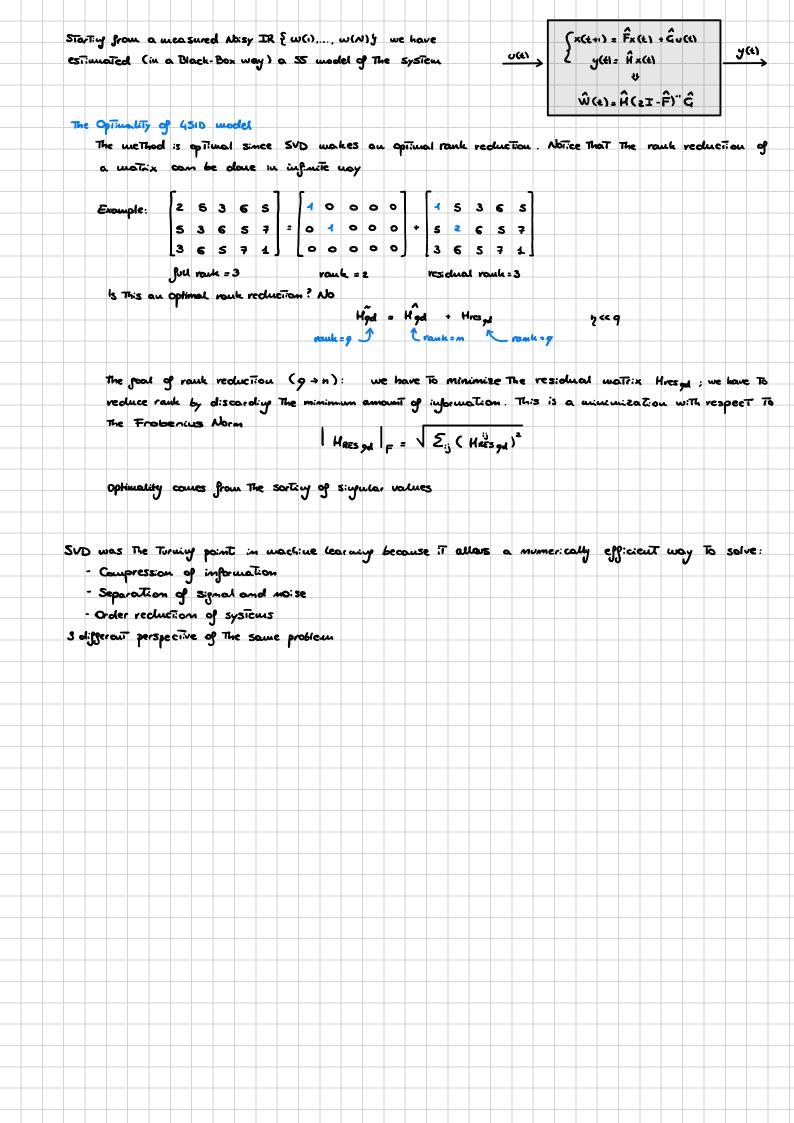

The Experimental Control of The Experimental Control of Section of	+	-																													-			H
We can castly differ a Tropperatural free on Its True chemin difference equations of the system by usey the delay operation of the format expension of a square of the system of the sys	7	ro	usf	٠,	gum.	ction	u CT	F)	repr	seui	Te T:	OH.	(cx	Tera	nal I	repri	Sevi	lalie	m)											-				ļ
complete. Since from on 100 officers against on of a squal of the square of a square of the square o																1 7				A:B	Dares	460	COM	Tio.		The	Suci	Paga	6.	us:	, T	he d	lela	
Example: Show from an Its affirmes equation of a squal given in great years of a square great years years of a square great years years of a square great years years years of a square great years ye																					Je		7-		~ J	100	7-		7	1	J ·			1
Example: Show from an Its affirmes equation of a squal given in great years of a square great years years of a square great years years of a square great years years years of a square great years ye	+	ope	roJ		5-, ((or 7	the d	or W	rord	ope/	aīo	r z	ר ,(יי	hai	is	a e	uce	· 9	e rai	òr:										-	-	-	H	H
Enample: Show Jose on Tip difference appealizes of a squal great of the state of th		1											2-1 ×	(£) :	= ×(£-1)		ľ		¹چ ا	'×6	e) =	x(t+1										
Consolution of the inpute with the impute response (impute response of a sample of the signal of the																																		
Consolution of the inpute with the impute response (impute response of a sample of the signal of the	t	+																													-	-		t
Consolution of the inpute with the impute response (impute response of a sample of the signal of the	4	Exo	mpl	e:	Sh-	ne fa	DM (.	aI	diffe	reuc		تمسو	Tion	, of	a	Sign	al																L
Only 2, we can bright of these (records part) Only 2, we can bright off against to person time g(x)(4+1/e=+1/e+1) = (4e+1) = (4e+1) u(e) g(x)(4+1/e=+1/e+1) = (4e+1) u(e) g(x)(4+1/e+1) = (4e+1) = (4e			,							00			1		J		3																	
Only 2, we can bright of these (records part) Only 2, we can bright off against to person time g(x)(4+1/e=+1/e+1) = (4e+1) = (4e+1) u(e) g(x)(4+1/e=+1/e+1) = (4e+1) u(e) g(x)(4+1/e+1) = (4e+1) = (4e	t	\pm																													+	-		t
Only 2, we can bright of these (records part) Only 2, we can bright off against to person time g(x)(4+1/e=+1/e+1) = (4e+1) = (4e+1) u(e) g(x)(4+1/e=+1/e+1) = (4e+1) u(e) g(x)(4+1/e+1) = (4e+1) = (4e	L	_									(£)	=-1/6	y (1	-1) -	1/8	y (t. i	e) +	į v ((-1) 4	- 1/4	u (t	-5)												L
Using 2, we can king all signals to present time y (6) (47 /6 2 · 1 /2 2 · 1) = (42 2 · 1 /2 2 · 1) v(6) y (6) y									OT 4.				_		_	1		Ī																
Using 2, we can king all signals to present time y (6) (47 /6 2 · 1 /2 2 · 1) = (42 2 · 1 /2 2 · 1) v(6) y (6) y	t	\pm					Corr	Seul	r) Ta	me i			recu	VSide	e Po	77)				Pas														t
g(s) (47 ½ 2" 1 ½ 2" 1 ½ 2" 1) = (46 2" 1 ½ 2" 1 ½ 2" 1) U(s) g(s) (47 ½ 2" 1 ½ 2" 1) = (46 2" 1) = (46 2"	L	_					, r				_				11	•																		L
g(s) (47 ½ 2" 1 ½ 2" 1 ½ 2" 1) = (46 2" 1 ½ 2" 1 ½ 2" 1) U(s) g(s) (47 ½ 2" 1 ½ 2" 1) = (46 2" 1) = (46 2"			.	. ,									- T	77.1.																				
As we can see, DEN and ANN lane the same order of the system is strictly proper we have 2th with k 21. As we can see, DEN and ANN lane the same order of the system is strictly proper we have 2th with k 21. As we can see, DEN and ANN lane the same order of the system is strictly proper we have 2th with k 21. Continued that stop response of a streety proper system. Continued that stop response of a streety proper system. Considering an impose a window of a streety proper system. Considering an impose a window is unforced that stop is a streety proper system. Considering an impose a william as the same constitution in the continued input. The literature of a streety proper system. Considering an impose a william as the system. In the continued input. The literature of a streety proper system. Considering an impose a william as the system. The continued input. The literature of a streety proper system. Considering an impose a william as the system. In the continued input. The literature of a streety proper of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a streety proper syst	T		-	7 *																		V-		. V.										t
As we can see, DEN and ANN lane the same order of the system is strictly proper we have 2th with k 21. As we can see, DEN and ANN lane the same order of the system is strictly proper we have 2th with k 21. As we can see, DEN and ANN lane the same order of the system is strictly proper we have 2th with k 21. Continued that stop response of a streety proper system. Continued that stop response of a streety proper system. Considering an impose a window of a streety proper system. Considering an impose a window is unforced that stop is a streety proper system. Considering an impose a william as the same constitution in the continued input. The literature of a streety proper system. Considering an impose a william as the system. In the continued input. The literature of a streety proper system. Considering an impose a william as the system. The continued input. The literature of a streety proper system. Considering an impose a william as the system. In the continued input. The literature of a streety proper of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a surface of a streety proper system. Considering an impose a streety proper syst	L	_			3	(E)	(4+	1/6	5-1 t	78 i	F. 4)	= (4/z	5-1 -	t ¼ i	-6)	∪(€		a)	ď	Œ):	- /*	2	7 14	2	υ(t)	uel	aT: W	e pa	wers	vepre	Soul	ä
In general we can say that the TP description of a spation is: W(e): B(a) 2: 60 obe* 1 the? As we can see . DEN and AlM have the same order. If the system is strain proper we have 2* with k 24 On the stay of the input with the same order. If the system is strain proper we have 2* with k 24 Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. The suppose of a strain proper system. The stay response is written as The stay response is written as The system is strictly proper, we have that w(c) i co If can be proven that the comput signed w(s) w(s) w(s) in the system can be written J(s) 2 = 100 ms (s) w(c) w(s) w(s) w(s) in the system can be written J(s) 2 = 100 ms (s) w(s) w(s) w(s) w(s) w(s) w(s) w(s)					"															_		4+ X	. S.,	+ %	€-8			"		'		'		
In general we can say that the TP description of a spation is: W(e): B(a) 2: 60 obe* 1 the? As we can see . DEN and AlM have the same order. If the system is strain proper we have 2* with k 24 On the stay of the input with the same order. If the system is strain proper we have 2* with k 24 Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. The suppose of a strain proper system. The stay response is written as The stay response is written as The system is strictly proper, we have that w(c) i co If can be proven that the comput signed w(s) w(s) w(s) in the system can be written J(s) 2 = 100 ms (s) w(c) w(s) w(s) w(s) in the system can be written J(s) 2 = 100 ms (s) w(s) w(s) w(s) w(s) w(s) w(s) w(s)	T																					14		٧.										t
In general we can say that the TP description of a spation is: W(e): B(a) 2: 60 obe* 1 the? As we can see . DEN and AlM have the same order. If the system is strain proper we have 2* with k 24 On the stay of the input with the same order. If the system is strain proper we have 2* with k 24 Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. Continues the stay response of a strain proper system. The suppose of a strain proper system. The stay response is written as The stay response is written as The system is strictly proper, we have that w(c) i co If can be proven that the comput signed w(s) w(s) w(s) in the system can be written J(s) 2 = 100 ms (s) w(c) w(s) w(s) w(s) in the system can be written J(s) 2 = 100 ms (s) w(s) w(s) w(s) w(s) w(s) w(s) w(s)	+	_			-			-											⇒	١,	(£) =	72	e T	74		(e)_		Pos	sitiv	e p	OWE	rep	re 50	h
W(e) = A(s) = 6 o th 2* to 10 pt 2 o the 2* to 10 pt 2 o the 2* with k > 1 As we can see, DEA and AM have the same order. If the system is strictly proper we have 2* with k > 1 Continues Time step on the input of the system of the step of the system of the s																				, v		5,4	% ≥	+ '/8				•		'		'		
W(e) = A(e) = 1 to 16 to 17 to 19 to 18 to 16 to 17 to 19 to 18 to	Ī	\exists																																Γ
W(e) = A(e) = 1 to 16 to 17 to 19 to 18 to 16 to 17 to 19 to 18 to	h	Ja	ACCO	d u	se c	om S	ioy T	hat	The 7	F de	scrip	Noile	of (a sy	sTeu	L iS	•													-	-	_		H
As we can see, DEA and AM have the same order. If the system is strictly proper we have et with k > 1 Continues the step anticipant Continues the step an		_										և ւ	N(2	1=	<u>B(s</u>	ه-د	_	60 +	6.5.1	t t	Pb5.	ľ	-k	_ ,	ייוטם	d	حماه	Por	ساد	iw	ועפ	To	O/T	}
Convolution of the input with the imputse versponse (imputse response representation) Considering an imputse signal in discrete time down. It the coult time observe time step and in discrete time down. It time coult time step and in discrete time down. It time coult time observe times time the step response of a streaty proper system. Considering an imputse signal in discrete time down. It time coult time observe times is time to the time down. It time could imput the life system is signal in discrete time down. It time coult time observe times to the time observe times to the system of the system can be united to the system is signal in discrete time down. It times to the system of the system of the system of the system of the system can be united to the system of the system can be united to the system of the system can be united to the system of the system can be united to the system of the syst	Γ														A(£			Q0 +	o's.	+	and	è-n					7	J.			1			ſ
Consolution of the input with the imputs response (imputse response representation) Consolution of the input with the imputse response (imputse response representation) Consolution of the input with the imputse response (imputse response representation) Consolution of the input with the imputse response (imputse symmet in discrete thing domin. In the could then the imput of the imput with the imputse response is written as conventional imput. The if response is written as the conventional imput. The if response is written as the system if the system is siricity proper, we have their wicol to the system if the system is siricity proper, we have their wicol to the year with the confidence of the system is siricity proper.	+	+			-																										-	-		H
Consolution of the input with the imputs response (imputse response representation) Consolution of the input with the imputse response (imputse response representation) Consolution of the input with the imputse response (imputse response representation) Consolution of the input with the imputse response (imputse symmet in discrete thing domin. In the could then the imput of the imput with the imputse response is written as conventional imput. The if response is written as the conventional imput. The if response is written as the system if the system is siricity proper, we have their wicol to the system if the system is siricity proper, we have their wicol to the year with the confidence of the system is siricity proper.	L.	As	we	00	, .	see .	DE	N a	and i	NUH	hav	e The	50	ue (orde	. IP	The	Sys	iem	is s	irici	ly p	⁄9pe	, w	e ha	ve	و. بر	wiTh	k	24				L
Convolution of the imput with the impute response (impulse response representation) Convolution of the imput with the impute response (impulse response representation) Considering an impute signal in discrete time domin. In the coult time obscient time domin. In the coult time obscient time impute imput. The IR response is written as The full (o), w(i), This vector of what the time obscient time domin is still the system as string time of the system is strictly proper, we have that w(o) = 0 If can be proven that the curput of the system can be written y(e) = 5 con w(h) u(e-h) = w(o) u(t) + w(i) u(e-i) + If can be proven that the curput of the system can be written y(e) = 5 con w(h) u(e-h) = w(o) u(t) + w(i) u(e-i) + If a vector						'										, J		'				[' ']	'											ľ
Convolution of the imput with the impute response (impulse response representation) Convolution of the imput with the impute response (impulse response representation) Considering an impute signal in discrete time domin. In the coult time obscient time domin. In the coult time obscient time impute imput. The IR response is written as The full (o), w(i), This vector of what the time obscient time domin is still the system as string time of the system is strictly proper, we have that w(o) = 0 If can be proven that the curput of the system can be written y(e) = 5 con w(h) u(e-h) = w(o) u(t) + w(i) u(e-i) + If can be proven that the curput of the system can be written y(e) = 5 con w(h) u(e-h) = w(o) u(t) + w(i) u(e-i) + If a vector	t	+						OCI	ት																						-			t
Convolution of the imput with the impute response (impulse response representation) Convolution of the imput with the impute response (impulse response representation) Considering an impute signal in discrete time domin. In the coult time obscient time domin. In the coult time obscient time impute imput. The IR response is written as The full (o), w(i), This vector of what the time obscient time domin is still the system as string time of the system is strictly proper, we have that w(o) = 0 If can be proven that the curput of the system can be written y(e) = 5 con w(h) u(e-h) = w(o) u(t) + w(i) u(e-i) + If can be proven that the curput of the system can be written y(e) = 5 con w(h) u(e-h) = w(o) u(t) + w(i) u(e-i) + If a vector	1	_						1	ւֈ				_	_	-					Go	ateun	ous T	iwe	Siep	901	ne in	put.			<u> </u>	_			1
Convolution of the input with the imputer vessouse (impulse response of a streety proper system with the imputer vessouse (impulse response representation) Considerity an imputes signed in discrete time domin. In the could true obtain this is the Draw Della dies a forteo. This is a signed conventional imput. The IR response is written as TR2 { W(0), w(1),} This vector of washers provides a unique obserption of the system by the system is siricity proper, we have that w(0) = 0 If can be proven that the curput of the system can be written y(e) = \frac{\xi}{\xi} \text{white} w(\xi) = \x														Ĭ	Ŧ.									'		'								
Convolution of the input with the impulse vesponse (impulse response representation) Considering an impulse signal in discrete time domin. In the continue of the input with the impulse vesponse (impulse response representation) Considering an impulse signal in discrete time domin. In the continue of the imput with the impulse vesponse representation) Thus of owner. This is the Date Delta (de) at Joreso. This is a signal imput. The IR response is written as the conventional imput. The IR response is written as the system of the system is signal in the continue of the system can be written as the conventional imput. The continue of the system can be written as the continue of the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written are the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal with written as the continue of the input signal written as the continue of the input signal written	t	\pm													dis	treie li	WE SI	eps.																t
Convolution of the input with the impulse vesponse (impulse response representation) Considering an impulse signal in discrete time domin. In the could then observe that the impulse vesponse representation) Considering an impulse signal in discrete time domin. In the could then observe the conventional input. The iR response is written as a state conventional input. The IR response is written as the system of the system is strictly proper, we have that w(0) = 0 If can be proven that the courtput of the system can be written y(t) = \frac{5}{5} \text{the courtput} y(t) is the convolutions of the input signal w(t) with IR vector.	+	_																												<u> </u>	-	<u> </u>		ŀ
Convolution of the input with the impulse vesponse (impulse response representation) Considering an impulse signal in discrete time domin. In the could then observe that the impulse vesponse representation) Considering an impulse signal in discrete time domin. In the could then observe the conventional input. The iR response is written as a state conventional input. The IR response is written as the system of the system is strictly proper, we have that w(0) = 0 If can be proven that the courtput of the system can be written y(t) = \frac{5}{5} \text{the courtput} y(t) is the convolutions of the input signal w(t) with IR vector.									1										_	4														
Convolution of the input with the imputse vesponse (imputse response representation) Considering an imputse signal in discrete time domin. In the could true obscient the proper system (inputse response representation) Considering an imputse signal in discrete time domin. In the could true obscient time domin. The could true obscient time for the signal input. The inputse is written as The obscient of matter to the system is strictly proper, we have that who is a state of the system is strictly proper, we have that who is a system of the system is strictly proper, we have that who is a system of the system is strictly proper, we have that who is a system of the system is strictly proper, we have that who is a system of the system is strictly proper, we have that who is a system of the system is strictly proper, we have that who is a system of the system is strictly proper, we have that who is a system of the system is strictly proper.	Ť							1	0										ightarrow															t
Convolution of the input with the impute vessouse (impute vessouse representation) Convolution of the input with the impute vessouse (impute expanse representation) Considering an impute signal in discrete time domain. In the continue of the obtained imput. The iR response is written as This is a statemark to the system is signal in discrete time domain. In the continue of the system as the conventional imput. The iR response is written as The function of the system as signal in discrete time domain. In the continue of the system of the input signal use of the input signal us	+	_			-			-	_																					-	-	-		ŀ
Convolution of the input with the impute vessouse (impute vessouse representation) Convolution of the input with the impute vessouse (impute expanse representation) Considering an impute signal in discrete time domain. In the continue of the obtained imput. The iR response is written as This is a statemark to the system is signal in discrete time domain. In the continue of the system as the conventional imput. The iR response is written as The function of the system as signal in discrete time domain. In the continue of the system of the input signal use of the input signal us									,										<u> </u>															
Convolution of the input with the imputse vesponse (impulse response representation) Considering an impulse signal in discrete time domain. In the could be a fort to the convolutional input. The IR response is written as This vector of numbers provides a name description of the system is siricily proper, we have that $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$. If can be proven that the convolution of the input signal $\omega(0) = 0$.	Т							J	ή											•	*													Ī
Convolution of the input with the imputse vesponse (impulse response representation) Considering an impulse signal in discrete time domain. In the could be a fort to the convolutional input. The IR response is written as This vector of numbers provides a name description of the system is siricily proper, we have that $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$ If cam be proven that the cutput of the system cam be written $\omega(0) = 0$. If can be proven that the convolution of the input signal $\omega(0) = 0$.	+	-					-		-							—	—		_	Co	mTim	evs '	Time	Ste	p res	PO~!	e é) a	Sirk	Hy	book	er S	ysie	4
Convolution of the input with the impulse vesponse (impulse response representation) Considering an impulse signal in discrete time domain. In the could true obtain this is the Dirac Delta of a forteo. This is a signal conventional imput. The IR response is written as TRe { W(O), W(I)} This vector of waters provides a winder description of the system g(E), If the system is strictly proper, we have that W(O) = 0 If can be proven that the cutput of the system can be written g(E) = \frac{1}{60} \omega (K) \tau(K) = \frac{1}{60} \omega (K) = \frac{1}{60}															Ī															'	' '			
Convolution of the input with the impulse vesponse (impulse response representation) Considering an impulse signal in discrete time domain. In the could true obtain this is the Dirac Delta of a forteo. This is a signal conventional imput. The IR response is written as TRe { W(O), W(I)} This vector of waters provides a winder description of the system g(E), If the system is strictly proper, we have that W(O) = 0 If can be proven that the cutput of the system can be written g(E) = \frac{1}{60} \omega (K) \tau(K) = \frac{1}{60} \omega (K) = \frac{1}{60}	Π																																	Γ
Convolution of the input with the impulse vesponse (impulse response representation) Considering an impulse signal in discrete time domain. In the could true obtain this is the Dirac Delta of a forteo. This is a signal conventional imput. The IR response is written as TRe { W(O), W(I)} This vector of waters provides a winder description of the system g(E), If the system is strictly proper, we have that W(O) = 0 If can be proven that the cutput of the system can be written g(E) = \frac{1}{60} \omega (K) \tau(K) = \frac{1}{60} \omega (K) = \frac{1}{60}	+	+							+			* *																		-	-	-	H	ł
Convolution of the input with the impulse vesponse (impulse response representation) Considering an impulse signal in discrete time domain. In the could true obtain this is the Dirac Delta of a forteo. This is a signal conventional imput. The IR response is written as TRe { W(O), W(I)} This vector of waters provides a winder description of the system g(E), If the system is strictly proper, we have that W(O) = 0 If can be proven that the cutput of the system can be written g(E) = \frac{1}{60} \omega (K) \tau(K) = \frac{1}{60} \omega (K) = \frac{1}{60}													\mathcal{I}							t														
Convolution of the input with the imputse response (impulse response representation) Considering an impulse Signal in discrete time domin. In the could the domin of the could the domin of the could the domin of the system is siricily proper, we have that w(0) = 0 If can be proven that the curput of the system can be written of the system of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the input signal w(t) will be the completion of the completion of the input signal w(t) will be the completion of the compl								() 				1						_ ′															
Considering an impulse signal in disserte Time domain. In the continue of the object of the size of t	+	+							-			las	c See	The e	Heer o	The i	sièp in	The :	oput 0	Her a	Siep .	delay									-			t
Considering an impulse signal in disserte Time domain. In the continue of the object of the size of t	L																																	L
Considering an impulse signal in disserte Time domain. In the continue of the object of the size of t			1				, [.	١.				L				١.,	l						_	7.										
Considering an impulse signal in discrete time domain. In the continue alouain this is the Dirac Delta $d(k) = 1$ for $k = 0$. This is a signal imput. The IR response is untilled as conventional imput. The IR response is untilled as $TR = \{ \omega(0), \omega(1), \ldots \}$. This vector of numbers provides a unique description of the system $g(k) = 1$. If the system is strictly proper, we have that $\omega(0) = 0$. If can be proven that the output of the system can be written $g(k) = 1$.		ON	10h	Alio	1	gu	ne in	put	: Will	160	11.04	PUSI	VE	200	mse	C	mpu	36	respo	mse	16	pyes	eul	Live o	u)						-	-		t
Considering an impulse signal in discrete time domain. In the continue alouain this is the Dirac Delta $d(k) = 1$ for $k = 0$. This is a signal imput. The IR response is untilled as conventional imput. The IR response is untilled as $TR = \{ \omega(0), \omega(1), \ldots \}$. This vector of numbers provides a unique description of the system $g(k) = 1$. If the system is strictly proper, we have that $\omega(0) = 0$. If can be proven that the output of the system can be written $g(k) = 1$.	6	4				1			_																					_	_			1
Time down This is The Draw Delta d(t) = 4 for t = 0. This is a sign conventional input. The IR response is written as IR = { W(0), W(1), } This vector of numbers provides a migue description of the system If the system is strictly proper, we have that w(0) = 0 If can be proven that the output of the system can be written y(t) = \(\sum_{t}^{\infty} \sum_{t}^{\i		T	•													_		da	_				۔۔ م	Ĺ, ,	دائد .		<u>.</u> -		عام	<u>.</u>	T.	70		Ļ
conventional input. The IR response is written as TR = $\int \omega(0)$, $\omega(1)$, $\int \omega(0)$, $\omega(1)$, $\int \omega(0)$, $\omega(1)$ $\int \omega(0)$. This vector of numbers provides a migne elescription of the system If the system is strictly proper, we have that $\omega(0) = 0$ If can be proven that the output of the system can be written u ,	T	\exists	4																Y				•											
conventional input. The IR response is written as TR = $\int \omega(0)$, $\omega(1)$, $\int \omega(0)$, $\omega(1)$ $\int \omega(0)$. This vector of numbers provides a migne elescription of the system If the system is strictly proper, we have that $\omega(0) = 0$ If can be proven that the output of the system can be written $\int u(0) u(0) = 0$ If can be proven that the output of the system can be written $\int u(0) u(0) = 0$ If can be proven that the output of the system can be written $\int u(0) u(0) = 0$ If can be proven that the output of the system can be written $\int u(0) u(0) = 0$ If can be proven that the output of the system can be written $\int u(0) u(0) = 0$ If can be proven that the output of the system can be written $\int u(0) u(0) = 0$ If can be proven that the output of the system can be written $\int u(0) u(0) = 0$ If can be proven that the output of the system can be written $\int u(0) u(0) = 0$ If can be proven that the output of the system can be written.	+	_ 6	_			-											ine	do	now	Thi	s is	The	Din	ac I	ella	40	E) =	4 Jo	rt=	0.	This	٠ ن د	a sīc	4
This vector of uniters provides a vigue description of the system $y(t)$ If the system is strictly proper, we have that $\omega(0) = 0$ If can be proven that the output of the system can be written $y(t) = \sum_{k=0}^{\infty} \omega(k) u(t-k) = \omega(0)u(t) + \omega(1)u(t-1) + \dots$ t So the output $y(t)$ is the complution of the input Signal $u(t)$ will rector																																		
This vector of numbers provides a vigue description of the system $y(t)$ If the system is strictly proper, we have that $\omega(0) = 0$ It can be proven that the cutput of the system can be written $y(t) = \sum_{i=0}^{\infty} \omega(t_i) u(t_i) u(t_i) + \omega(t_i) u(t_i) u(t_i) + \ldots$ t so the output $y(t_i)$ is the complution of the input Signal $u(t_i)$ with the context of the context o																				70				_										Γ
This vector of numbers provides a vigue description of the system $y(t)$ If the system is strictly proper, we have that $\omega(0) = 0$ It can be proven that the cutput of the system can be written $y(t) = \sum_{i=0}^{\infty} \omega(t_i) u(t_i) u(t_i) + \omega(t_i) u(t_i) u(t_i) + \ldots$ t so the output $y(t_i)$ is the complution of the input Signal $u(t_i)$ with the context of the context o	-	-				•	-		•			****		t								T	R=	y u)(o)), w	M)	š		-	-	-	\vdash	H
If the system is siricily proper, we have that $\omega(0) = 0$ $ U(0) = 0 $																TE	ای	œGe	c of	LL LL	5ers			_				_		, a	The	Sus	icm	
True output $y(t) = \sum_{k=0}^{+\infty} \omega(k) u(t-k) = \omega(0)u(t) + \omega(1)u(t-1) +$ The output $y(t)$ is the complation of the input Signal $u(t)$ will the vector	Г																		_										1	_		7		ſ
True output $y(t) = \sum_{k=0}^{+\infty} \omega(k) u(t-k) = \omega(0)u(t) + \omega(1)u(t-1) +$ The output $y(t)$ is the complation of the input Signal $u(t)$ will the vector	Å(ŧ)	•			-			+							u	The	: 5 y	Sièu	Zi 4	ऽार	cily	pre	per	, w	e ho	ve -	HaT	ω	(0)	= 0	-	\vdash	H
t so the output y(4) is the completion of the input Signal u(4) will IR vector						wc	(1																											
t so the output y(4) is the completion of the input Signal u(4) will IR vector					1											_					_			_	_						,		_	ľ
t so the output y(4) is the completion of the input Signal u(4) will IR vector	+	+			•	•••										_ rr	CO			_	_				_	1								
t so the output y(4) is the completion of the input Signal u(4) wit	L	_				ļ.,								ļ.) و	(F) =	٤,		w(I	ں (ء	(t-	()	- (n (o,	u (t	۸ +	ω(i) U	(()	†	
TR VECTOR TO THE TRANSPORT OF THE TRANSP			, e e e e	Ī			14.							1		_	مد ا	۵	_	Lk Ì				ļ	_		<u>_</u> ~	l.a ·						
TR VECTOR TO THE TRANSPORT OF THE TRANSP	-	-	<u> </u>			+	+ •	ب				+	-	τ		S	o 714	K 6	w (pu	ď	(4)	3 Th	T (4	mo	Mic	384	T "	ne ii	put	- 34	gnai	n(#	· wi	1
	L		1					١٠.																										L
)						•			1																						
	+	+	ω	(0)		+			+ '	٠	•																					_		t
	1	_																												<u> </u>	_			ļ
	\dagger	+																																t
	1	_				-																									-			1
	\dagger	+																																t

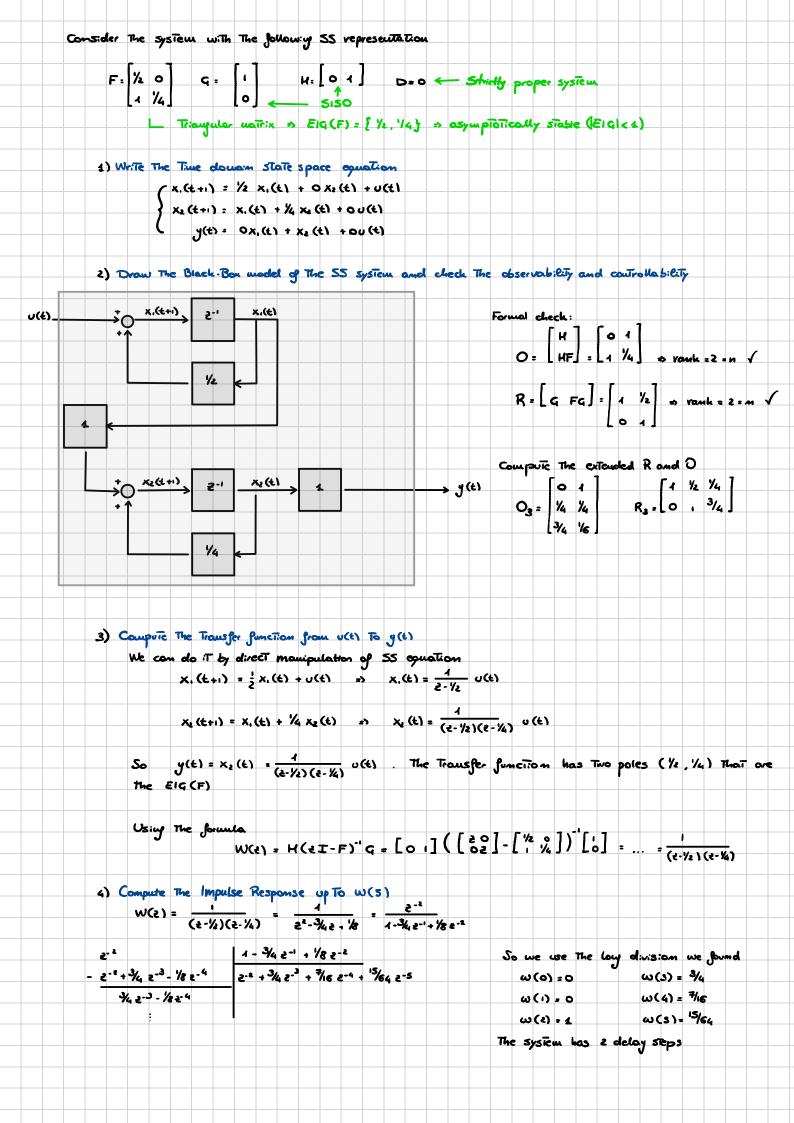


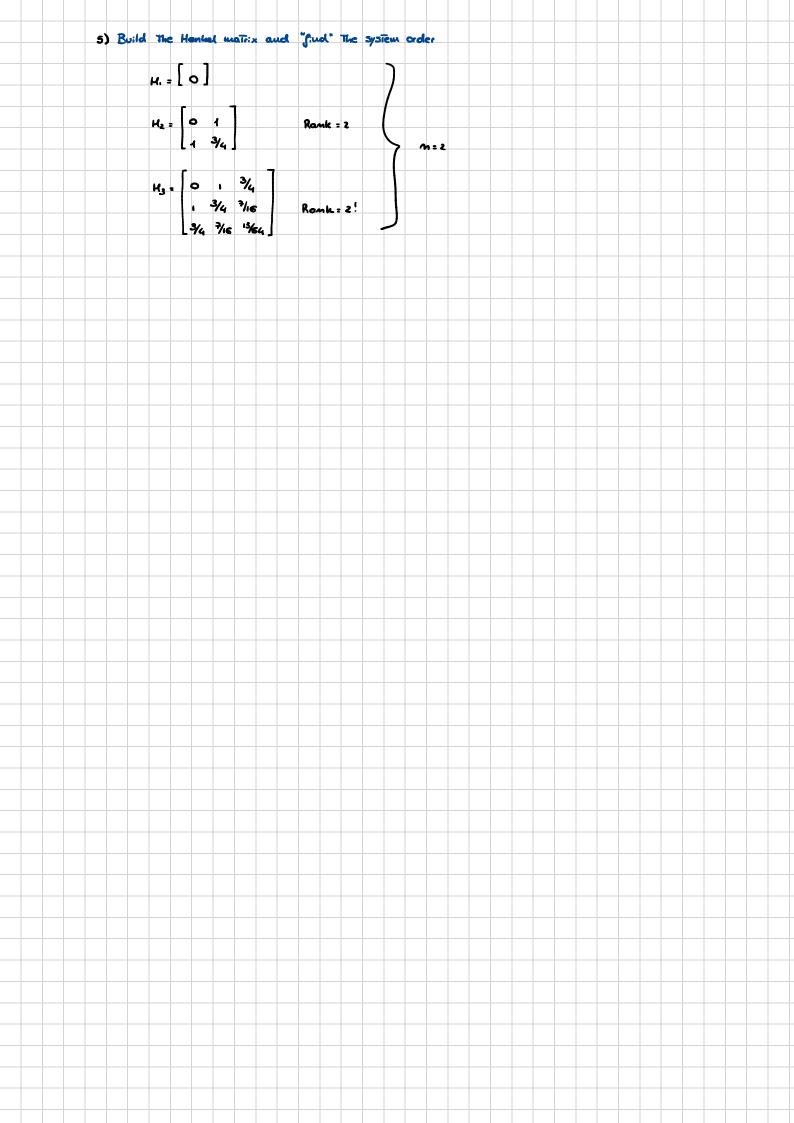

```
S. State Space To Impulse Response
Start from the state space system
                                        X(t+1) = Fx(t) + Gu(t)
                                             y(t): Hx(t) + Ducer
Initial conditions: x(0)=0 and y(0)=0
Run The system starting from the justical condition
                                                          y(1) = Hx(1) + HG u(0)
       x(1) = Fx(0) + Gu(0) = Gu(0)
                                                          y(2) = Hx(2) = HFGU(0) + HGU(1)
       x(2) = Fx() + Gu() = FGu(0) + Gu()
       x(3) = Fx(2) + Gu(2) = F^{2}Gu(0) + FGu(1) + Gu(2)
                                                          y(3) = Hx(3) = HF2Gu(0) + HFGu(1) + HGu(2)
you can set The peneral rule:
                 y(t) = 0 u(t) + HG u(t-1) + HFG u(t-2) + HFG u(t-3) + ...
So IR = [0, HG, HFG, HF2G...]. The feneral formula for the IR is
                                    ω(t) = $ 0 t.0
6. Impulse Response To State Space
                          Hoving from IR to SS is the key task of a black box system identification method called
                          Subspace-based State Space System Identification (4510) method
                          im HATCAB sys 10 Toolbox : > 114 Sid
                          Easy To make an experiment to build an IR
Now we recall the fundamental concept of observability and controllability of a system. Given the 55 representation
                                         (x(t+1) = Fx(t) + Gu(t)
                                              y(t): Hx(t) + Dues
The system is fully observable from the output y(t) if and only if the observability matrix
                        0 = MF
is ful-rank (RANK(O) = m)
Observability depends only of F and H so it's a property related to State + output relationship: by maiching the
 output signal y(t), we can observe the full state x(t)
The system is fully controllable from input to state if the controllability water
                             R = [ G FG ... F" G]
is fourant (RANK (R)=m)
Considerability depends only on G and F, so it's a property of imput state relationship: by moving the
input, we can control The full state x(t)
```



```
451D procedure, starting from a moise-free experiment
1 build The Housel water in incressing order and check The rouse


H. = [ w(1)] 


RANK = 1
      Hz = [w() w(e)] = RANK = 2
         ω(ε) ω(z) J
       Hm : [ ... ]
                     s RANK = n
                                           STOP a we found The 1° Henkel water wat full rank
       Hans = [ ... ]
                           · RANK · M
2. Take How (This is an (M+1) x (M+1) watrix of rank : 1). We can factor se that into two Rectoupular
 matrices of side (m+1) x m and mx (m+1):
          Hann = A Com Run S Coursider this water as the extraoled controllability waters
                    The consider this matrix as The extended (M11) observability matrix
3. Estivois F. G. A from On. and Rm.
          Omni = [H]


Rmni = [G FG ... F MG]


G = Rmn (:; 1) cmy row | first col
                 H = Ont (1; : ) first row/am cols
To estimate F consider, by example One (The some can be done also from Ring)
                 H \longrightarrow Q = O_{n+1} (A:m;:)
                                                                   O and Oz are square matrices autical by
                                                                    the "shift invariance property"
                                                                                O<sub>2</sub> <u>-</u> Q F
                                                                   Since O. is square and invertible. So
                                                                             Ê = 0, ''0₂
                          Oe = Om+1 (2: N+1; :)
We have estimated a BB SS model { F, G, H} starting from a moise free experimentally measured
 impulse response
This method is constructive and non parametric. Remind that a Typical parametric estimation afforthm from class is
 based on These 4 incus:
    1) Collect a Datasci:
                            Euch, uca, ... , ucm } [y co, y ce, ... , y cm)
     2) Choose a parametric model:
                                     H(9) : y(1) = W(2;3) v(1)
          with W(2,8) is the Transfer function and I is the vector of coefficients of NUM IDEN
     3) Define The performance ; wolex:
                                   J(8) = 1/2 E," (4(4) - m(5;3) o(4))2
         eg. Sample variance of the autput error mode by the model. We can "sort" The quality of the model
         (eq. if J(3,) < J(3,) so H(9,) is better than H(2))
     4) Optimization step: we iminimize J(9) with respect to 9
                                       On = arpming J(O)
         so H(\hat{9}) is the best woold
```