
Black Box system identification usingmon parametric method in state space domain and Time domain

Before presenting the system identification algorithm , we recall the 3 main representations
u(t)

State x(t) y(t) o a discrete-Time
, dynamic , linear systems

1- State space (SS) representation
2 Transfer function [TF) representation
3. Impulse response (IR) representation

state space representation (internal

The description of the system is based on a vector of interval variables

v(t]
x(t) =[St x(t) = [x,(t), xa(t) ....,

Xn(t)]T

called states

The system is described using Two equations

E x(t + 1) + Fx(t) + [u(t) state equation (difference equation)

y(t) = Hx(t) + Bu(t) oripot equation

If system isSingle-imput/single-output (siso) we can see 4 matrices :

F = [ux] a [m]n = [exn]p =
[x]

whereh is the order of the system

If D= 0 The system is siricity proper (the impor doesn't affect directly The output asymptotically
stable

simply Stable

The most important property is stability Im

#n continuous Time domain
,
the system can be written as

E*(t) = Ax(ti + Bu(t)

y(t) = (x(t) + Du(t) Re

where The Stability is calculated asThe real part of the Eigenvalue EIG(A)

· if Re[ElG(A)] <O The system is asymptotically stable

· if Re[ElG(Al] >o The system is unstable unstable

· if Re[ElG(A)] = 0 The system is simply Stable

Im
unstable # discrete Time domain the system is written using the SS representation as

Ex(t+1) = Fx(t) + Gu(t)

y(t) = Mx(t) + Bu(t)

Re and the Stability ElG(F) depends on the uniT cycle in the complex plane
simply
Stable

· if ElG(F) is inside the unit cycle ,
the system is asymptotically stable

asymptotically
· if ElG(F) is outsideThe uniT cycle ,

the system is unstable

stable if ElG[F) is on The uniT cycle ,
The system is simply stable

Example : Consider The following Siso system of order m = z

X
, (t+1) =2X, (t) + zv(t)

E *z(t+ 1) = X,
(t) + 2xv(t) + v(t) => F-(0)a = (2)n = 142]a=

y(t) = X, (t) + yXz(t)

we can see that : unstable !

· F is a Triangular , So ElG(F) can be directly found on the main diagonal (in This case : 1 and 2)

· 2 SimF) is out the unit cycle so the system isrusiable

· System is strictly proper D = 0

State space representation is not unique : we can Take FT, invertible matrix

FF, = T, FT, 94 = T, 4 H M. = HT,

+
DD1 = D

are equivalent representations



Transfer function [TF) representation (external representation(

We can easily obtain a TFrepresentation from an I/O Time domain difference equation ofthe system by using the delay

operator z"(or the forward operator zt)
,
That is a linear operator :

zx(t) = x(t-1) zx(t) = x(t+1)

Example : Start from an I10 difference equation of a signal

y(t)= -y(t-1) -8y(t- z) + =u(t-1) + v(t- 2)

output at base past output past input
<present) Time t Crecursive part

Using z
,

we can bring all signals to present time

y(t)(1+z+ + y8z3) = (12z" + (4z-2)v(t) = y(t) =

12z" +/E(t) negative powers representation
1+6z" + y8z-3

=> y(t) =

(2z + /
v(t) positive power representation

z2+ 16z +18

In general we can say that the TF description of a system is :

W(z) =
B(z)

z-k
=

30 +b, z" +... + 3pz
-P

z pure delay from input To outputA(z) &o+ a,z" +.. .+ amz- n

As we can see
,

DEN and NUM havethe same order . If the system is siricity proper we have z" with b =1

~[t]

1- ⑧ continuous Time step onthe input

discrete Time steps

· · t
8

y(t) response of amonstricity proper system

⑳
a ·

o continuous Time Step response of a strictly proper System

↳

He

· ⑧ E t

↳

we see the effect of the step in the input after 1 step delay

Convolution of the input with the impulse response (impulse response representation]
w(t)

Considering an impulse signal in discrete Time domain. In the continuous

1
E Time domainThis is the Dirac Delia (Ct) = 1 for t = 0. This is a standard

conventional input. The IR response is written as

* E 0000 *
t FR= Gw(d) ,

w(l) . . . . ]
This rector of numbers provides a unique description of the system

y(t) If the system is strictly proper ,
we have that w(ol = o

w(z)

f
08

I can be proven that the output of the system can be written as

y(t) = 50m(k)v(t- b) = w()u(t) + w()u(t-1) + ...

·.. So the output y(t) is the convolution of the input Signal(t) withThe

↓ *
#R Vector

w(d) * 0



SS
6 To sum up,

we have 3 different representations and 6 possible Transformations
1

2 5
between pairs of representations ,

but... are all possible?

TF 3 IR

4

1. State Space To Transfer function
ConsiderThe State Space representation

E X (t+1) = Fx(t] + Gust]

y(t) = Hx(t) + Bu(t)

using the z operator : identity matrix [i]

zx(ti = Fx(t) + Gu(t) = (zI- F(x(t) = Gu(t) = x(t) = (EI- F)
"

Gu(t)

So Transfer function

y(t) = H(zI-F)"Gu(t) = W(z)u(t) W(z) = H(zI -FjG

example: consider the SISO system with 2 States (m =2)

*(t+ 1) = X, (t) + v(t]
-

E Xc(t+ 1) = =x, (t) + 2xz(t) + v(t) => -] ]]D
y(t) = X

, (t)

Using The formula we can find theTransfer function as

w(z) = [10])[] - [3])"[i] pole-zero cancelation

[a] 1 = [10][z]"[i]
z-2

-
1 z-1

= [10](z)[ ][i] =
...

=

(z-2)(z-x
=

z-
=

1- z-1

Alternative way is a direct manipulation of SS equation
X, (t+ 1) = X, (t) + v(t) = > zx ,

(t) = x, (t) +v(t) = x,(t) = yz- v(t)

xz(t+ 1) = 2 x(t) + 2xz(t) + u(t) = (z-z)xy(t) = z(u(t)) + v(t) = useless To find W(z) since ...

y(t) = X,(t) =z u(t)

NoticeThat
,

SS representation has order m = 2 (So 2 Eigen values of F)
, so if representation is a system of

order 1 (2 pole) .
Mismatch of orders because the system is notfully observable

2. Transfer function To State Space (not very used in practice) called Realization of a TF into a SS model

Issue : SS representation is not unique (00 equivalent representation of aTransfer function into an SS model)

Let's see the formula (as an example) of a special representation called control representation

W(z) =

b0z" + b,
zm

-2
+... + bm-

=> FT a)
M

...
so e a

zw + a
, zm-

+... + am I
1

NoticeThat The DEN is forced to be monic and the system is strictly proper and of order m

example : consider The Transfer function of order 3

W(z) =

2z2 + /2z + 14
=>·z3 + (4z2+37 +



3. Transfer function To Impulse Response
Easy via lay polynomial division of The Transfer function (it's easier To compute if W(z) is written using the z notation

eample:

w(z) = 22 yz =z-
We can rewrite W(ET as

W(z) = 1. z+
+1z2

+ yz-3
...

z - 1 1- 12z-1

S the output signal y(t) = W(z] #I will be

=- +zz-2
z+

+ (2z-2 +4z
-3

... y(t) = W(z)u(t) = v(t -1) + ]v(t-2) + (u(t-b) +
...

(2z- 2
This is the convolution of u(t) with IR :

-T2z-

+
Y

IR = 30
,

1,2
,

% ... 3

=44z-3

+/8

The same result can be obtained in awore elegant g(t) = z 1. zJu(t)
Recall the geometrical seriesIn

-
= Ya so in our case a = 12 z-2 and

y(t) =(z+ z
+

((z-1)k)v(t) =... = ou(t) + v(t- ) + = v(t- 2) + yu()-3)
...

Notation : have usedfor digital filters
W(z) =

z" +2z -2

1 + /3z- 1

This Type of digital filter is called IIR filter (infinite impulse response) : in fact . The Time domain oviput signal is

y(t) = - (3y(t- 1) + v(t-1) + (2v(t-z)

infinite lay division dueTo the recursive part

W(z) = z" +2 z- 2 +zz- 3

This Type of digital filter is called FIR (finite impulse response) : infact . The Time domain oriput signal is

y(t) = v(t- 1) +y v(t-x +zv(t-3) = 1 = 50,
1

,
/

,
%3

,
0

,
0 ... 3 is finite

4. Imprise Response To Transfer function
T Make This Transformation we needTo recall a definition: given a discrete Time signal 56th with S(t) = 0

for to ,
the z Transform ofSignal Stt) is defined as

2[s(t)) = 5.
+*

s(t)z-t

t

Is a function of (notof t) and is theTransform of a signal (not of a system
S(t]

# can be provemthat

w(z) = z[w(t)] = 50 v(t)z- t

The Transfer function of a system,
isThe Z-Transform of its Impulse ~

Response .
However

,
in practice This formula cannot be used

*

t

because

· we need infinite values of IR

· The IR signal musi be available noise-free



5. State Space To Impulse Response
Start from the state space system

E X (t+1) = Fx(t] + Gust]

y(t) = Hx(t) + Bu(t)

Initial conditions : X(0) = 0 and y(d = 0

RunThe system starting from the initial condition

X(1) = Fx(0) + Gu(0) = Gu(d) y() = Hx() = HGu(0)

x(2) = Fx() + Gu() = FGu(0) + Gu(l) y(2) = 1x(z) = HFgu(0) + HGv()

x(3) = Fx(z) + Gu() = FGu(0) + FGu(i) + Gu(z)y(z) = Hx(3) = HF-Gu(0) + HFGu(i) + HGu(z)

you can get the general rule :

y(t) = 0v(t) + HGu(t- ) + HFGu(t- 2) + HFGu(t - 3) + ...

So IR = So, HG , HFG ,
HF'G ... Y . The general formula for the IR is

w(t) = 0 t = 0E HFt"Gt >0

6. Impulse Response To State Space

Moving from IR To SS isThe key Task of a black box system identification method called

SS Subspace-based State Space System Identification (4SID) method

im MATLAB Sys ID Toolbox :<44Sid

TF IR EasyTo make an experimentTo build am IR

Now we recall the fundamental concept of observability and controllability of a system . Given The SS representation

[x(t
+1) = Fx(t) + Gu(t)

y(t) = Hx(t) + Bu(t)

The system is fully observable from the output y(t) ig and only if the observability matrix

-

H

* = HF

:

HFw- -

is full-rank (RANK(0) =m)

Observability depends only of F andH so it's a property related to state + oviput relationship : by maiding The

output signal y(t) , we can observe the full state x(t)

The system is fully controllable from input To state iff the controllability matrix

R = [GFG
...
Fa]

is full-rank (RANK(R) = m)

Controllability depends only on G and F
,

so it's a property of impri-state relationship : by moving the

input , we can control The full state x(t)



example :

S: x , (t+1) = YzX, (t) + v(t) m = 2 x() =[*] siso

E xz(t+ 1) =3Xz(t]

y(t) = yx . (t) #[]]
Block-scheme

observability
w[t]

&

+

X,(t+1]
z- 1 x(t) 14 y(t) 0]=

RANK(0) = 1 < 1 not full rank=

"2 not fully observable

Xz(t+ 1) Xc(t)
z- 1

+

13

Modified System v(t) X, (t+1) z- * (t) "4 y(t]
I

S: x(t+1) = Yzx, (t) + v(t) + Y6xz(t) & ↓

E xz(t+ 1) =3Xz(t]

y(t) = yx . (t) 12

Fy] =o
116

full rank = Sig, is fullyobservable

Xc(t+ 12 Xc(t)
z- 1

+

113



example:

S:

E
X, (t +1) = (2x, (t) Fo ao] no
X (t+ 1) = Y3x2(t) +v(t)

y(t) = Y4X(t)

Check the

controllability[ ] [ RANK(R) = 12 not fully controllea

*is not controllable

Xi(t+1]
z- 1 X, [t] 14 y(t)

+

"z

w(t) t Xx(t+1)
z- 1 X>[t]

&

Y3

Modified system

S:

E
X(t+1) = (2x, (t) +6Xz(t)

Xi(t+1]
z-

X, [t] 14 y(t)
X (t+ 1) = Y3x2(t) +v(t)

+

y(t) = Y4X(t)

"z

F [Ys]R=] RAMRj
16

w(t) t Xx(t+1)
z- X>[t]

&

Y3



Any state space system can be divided into 4 subsystems No10

- not observable/controllable (No/C)

- observable / not controllable (ONC)

- observable/controllable (0(c) & INC

- not observable / not controllable [NOINCI

y(t)
w(t)

The external I/O representation can only describe ↓ /C

the controllable/observable subsystem of the internal

representation. So
,

all the other subsystem are hidden from
am 110 perspective NONC

Only the OK can be seem from the external point of view

Internal representation
& HANK MATRIX of order m build from the impulse
response FR = Eclos

,
w(l

, ... Y

j
w(l) w(z)... w(m)

IHm = W(2) w(m+ 1)

:
....

...

w(m) ... w(2m + 1)

we start from whl (and not will .
It's a square matrix mxm .

All the counter diagonal containsThe save element

and The Last element is w(2m-1]

Recall the Transformation SStIR : W(t) = HFTG for >0. Replace This formula into Hm
, so

Hu = HG HFS HFw
+

Gj I ↑ : Ja =g ...
Fra) = m = or

MFG ... HF14 = ↑ controllability matrix R

HFLG ... MF2n-4 HF
w-1

& observability matrix O

Now we cam present The 4SID algorithm to obtain an estimated SS model in a black box way starting from an

experimental measured Truncated IR of the system

u(t)

Dataset collected (Truncated) : Sw(es.....w(n)]

1

We start with the assumption that the IM is measured moise-free
(ideal situation)

N t

y(t

w(i)

i-
w(f)



4Sii procedure , starting from amaise-free experiment
1. build The Hankel matrix in incivisealy order and check the rank

H.
= [ w(i)] => RANK = 1

Hz =((i) (2) => RANK = 2[w(z)w(z)
1

:

Hm = [ ... ] => RANK = n

Hm+ = [ ... ] = RANK = m Step - we found The 1° Henkel matrix not full-rank

2. Take Mu+ [this is an (M+ 17 x (m + 1) matrix of rank =n)
. We can factorize Hunti into Two Rectangular

matrices ofSize (m + 1 7 x m and mx [M + 1) :

Hm+ 1 =

m+ 1 [on][an+ ]a - Hur : OmniRun
M+1

we considerthis matrix as the extended controllability matrix

~

we consider this matrix as the extended (m+ 1) observability matrix

3. Estimate F ,
M from On, and Mm+ i

On Rn+ 1 = [GF
...
F]1

HFM
↓

& Ru+ ( :; 1) any row/ firstcol

=On+ i (1;: ) first vow/any cols

To estimate consider
, for example Ont . (The same can be done also from Enti

· I
* = Un+ [1 : m ;: ) * and D2 are square matrices limited by

The "shift invariance property"
&2 = 0. F

Since I, is square and invertible. So

# = 0.02

&2 = 0m+ 1 (2: n+1j : )

We have estimated a BB SS model &F.. My starting from a moise-free experimentally measured

impulse response

This method is constructive andyouparametric .
RemindThat a Typical parametric estimations algorithm from data is

based on these 4 items :

1) Collect a Dataset :

50(.) ,
v(z)

. . ...(m)Y(y() , y(z) ...., y(m)]
2)Choose a parametric model :

M(8) : y(t) = W(z ; 8)u(t)

with W(z
, 8) is The Transfer function and O is the vector of coefficients of NUMIDEN

3) Define The performance index :

J(8) = YNI, (y(t) -W(zi8)u(t))

eg. sample variance of the output error made by the model
.

We can "sort" The quality of the model

(eg. ifJ(5. ) < J(G) so M18,
1 is better than M(8) (

4) Optimization step : we minimize J(Q) with respectTo &
1

On = argmino JCO)

so M(E) is the best model



4)SID for Noise-free data was known Since 'So
, useless since it is not robusi with respect To Noise on w(t)

The method was rediscovered in '90 when a fundamental result of numerical algebra was developed
Singular value Decomposition (SVD) [MATLAB was build inthe same period I

u(t)

Now we move to the real problem: we assume that the IR is measured
-

With Noise

ci(t) = w(t) + y(t)ft= 0
,

1
,
z ...

N = 500-10.000 t

noisy
measured

noise measured
signal IR

ideal mon noisy signal y(t] ideal FR

Dataset Available : Sol,(il
,
. ..,/N]]

We see the algorithmThat start from Measured IR
,

but GSID can be

extendedTo any imput dataset
mmm

4SID Algorithm in case of Noisy IR dataset

1) Build The Henkel matrix using The full dataset

star: fromSil Cafrom (0)) assumingTheStrictly proper system

↑willbuild using noisy (d+1)

data
Li j : I g+ d- 1 = Nt we are

rectangular gxd (g) (g+d -1) using The whole dataset

(with (d) 9 g = d

N

best for estimation quality
Assuringgad by construction and g+d-1 =Ntg= N + 1 - d 92 d butworst computational

load

Rule of Thumb : gld leg.
N= 1000 = (g = 350 d = 651)

, (9 = 400,
d = Soil.

19 = 450 ,
d= 551)

... These are good choices
, you get very similar final results). d

N

gd worstfor estination

quality but best for computation
2) SUD of Fegd Hgd = Ugxggxd

· Vand load

· Yand V are square and unitary (M is unitary if deT(Ml = 1 and M = MT) matrices

↑
T.

0 -

I· = 0 - oo is a diagonal rectangular matrix where ST.......Yg] are called singular values of Ed . They
...

· O 50 are real positive umbers sorted in decreasing order (T. 52 = Ty z ... Jg)

SVD is a sort of diagonalization of a rectangular matrix. Singular values are sort of eigen values for a

rectacular matrix. NoticeThat if M is rectangular: S
.

V
.
(M) = ElG (M. MTL

Svis is well implemented in MATLAB : (v. S
.
VI = sud(M) (like in many other merical algebra software)

3)BlotThe singular values and cut the system part of the matrix These are the SV. of the system

T T real-case : no clear Jump but

I ideal case of clear Jump
only a "knee"

Suof The Noise
ideal jump

incestivated order ofthe system i ↓
[

estimated order of the system

We have mode a system-Noise separation. Typically mag leg 9 : 400 ,
m = 8)



Now we can complete the cut by culting the U
,
ST matrices :

w
M

5 vi ~

Hgd =

·
~ ·

5 = %: rn]
Y

Define a new matrix #I like the original
Fgd =T Hd = Hd + Hresed

original rank= q residual noise matrix rank = &

clean rank = m

4) Estimation of F,, M starting from the clean matrix Mega

Agd= with 51 /or
N

We can define: and E=**T

so it's possible To rewrite Heg = &R
-n

& and R can been seem as extended observability and controllability matrices

d

=

(2)Y=( :; 1) not a square matrix!

% =(2:9;: ) 0=(1 : 9- ;: ) = Shift invariance property of observability matrix O..F =0 F = 0.O

Solution of a linear system Ax = B

1)
A X = B => h < h = less equation than variables so the system is under-determined

4x m hx and to solutions

2) MX 1

A X = B
= n = m => "Square system" of n equation and m variables

, so only I solution

4x m MX1 CifA is invertible) : X = A"B

MX 1

XA = B => hxn = more equation than variables (The system is over-constrained

S There are no solutions

We can solve this system in approximate "least squares"

AX = B = ATAx = ATB = Y = (ATA)B

Square is called "Pseudo-inverse" <Surrogate of the

inverse for the rectangular A matrix)

So going back To our case
,
we can solve it using the point 3

0,
F = 02 => 0.0

.
F = 0,02 = # = 10. 0.7" O:0

We have found the state-space model given by35



x(t+1) = x(t) + Gu(t)Starting from a measured Noisy IRSWC...., WINIY we have

v(t) E y(t)
estimated (in a Black-Box way) a SS model of the system y(t) = Mx(t)

↓

Y(z) = F(zI -F)+

The Optimality of 4S1D model

The method is optimal since SVD makes an optimal rank reduction. NoticeThat the rank reduction of
a matrix can be done in infinite way

Example:
25 3 6 5 10 * 65I 11 ·% I5365 7 = 8

365 71 * O -08 36 571

ul rack = 3 rank = 2 residual rank = 3I
Is This an optimal rank reduction ? No

Higd = Hegd + Hresge n9

rank = 9 rank = m rank =9

the goal of rank reduction (g + n) : we have to minimize the residual matrix Hresgd ; we have To

reduce rank by discarding the minimum amount of information. This is a minimization with respect To

The Frobenius Norm

I HresgdF = [ij (Hrsgal

optimality comes from the sorting of singular values

SVD was the Turning point in machine learning because it allows anumerically efficient wayTo solve :

- Compression of information
-

separation of signal and noise

-order reduction of systems
3 different perspective of the same problem



Consider the system with the following SS representation

F=20 n= [01] += 0 Strictly proper system[11 a : [b]
SISO

Triangular Matrix e ElG(F) = &12 , 143 = asymptotically Stable (Elal < 1)

1) Write The Time domain state space equation
x(t + 1) = (2x, (t) + 0xz(t) + v(t)

E xz(t+ 1) = X, (t) + (4xx(t) + 00(t)

y(t) = 0x, (t) + xz(t) + ou(t)

2)Braw the Black -Box model of the SS system and check the observability and controllability

~(t]
+ X ,(t+1) z

- 1 X,(t) Formal check :

t

· [M]To ] e rank = 2 = m

12

1

R = [c Fa] = [ 12] = van =

ComputeThe extended R and O

t x2(t+1)
z - 1 Xc(t) 1 y(t) ↑

-1

I R I
& 83=4

34 %

14

3) Compute the Transfer function from u(t) To g(t)
We can do it by direct manipulation of SS equation

x, (t+ 1) = [ X , (t) + v(t) = x,
(t) = v(t)

z-2

1

xz(t+ 1) = X, (t) + Yxz(t) = x(t) =

(z- yz((z - ()o(t)

So y(t) = Xz(t) =

(Y)(z- y)U(t) .
The Transfer function has Two poles (12

,
%) That are

the ElG[F)

UsingThe formula
w() = M(zI- F)

"

a = [01]([z0] - [ ])
"

[b] =... = (y2)(z- (4)

4) Compute The Impulse Responseup to w(s)
I z

- z

W(z) =

(z - (2)(z- y)
=

z- 94z +8 1 -34z" + 182-2

z
- 2

I
1 - 34z-

+ 18z - 2 So we use the long division we found
- z

2
+34z-

3
- y8z-4z2 + 3/4z- + 7/16z-" + 13642-3 w(0) = 0 w(3) = 3/4

34z-3
- 1824 w(1) = 0 w(4) = 7/16

: w(z) = 1 w(s) = 15/64

The system has 2 delay steps



5) Build The Henkel matrix and "find"The system Order

n = [0]

Mc = [P1] Rac.

m = [00] Rank = 2 !

S n = 2

34761164


