
3 - Virtual model based Software Sensing in feedback using Kalman Filter

Kalman Filter is based on a state space representation of the System

E X(t+ 1) = Fx(t) + Gu(t) + v, St) noise u(t) y(t)

y(t) = Hx(t) + Bw(t) + vz(t) Control X(t]

measurable

input

We assume that theSystem model (F, G ,
M) is given , Typically V.(t) Vz(t) noise [moT

measurable)
built White-Box .

Goal : given a model of the system ,
withlF we can solve these

3)+) problems estination

1) k-steps ahead prediction of the output
[U(1) , . . .

, v(N)3 Sy(1) .
. . .

. y(N)] => y(N+ k(N)

present Time is N future h-sieps ahead presentTime

Notice that this is nota new problem : we can solve this problem using the predictionTheory on

ARMA/ARMAX models (110 models]

2) k-step ahead prediction of state

state is not measured Suc .....(N)Y Gy() .
. . .

. y(N)] => *(N+ k(N]

time instantTo predict
This is a new problem : with ARMAX models we cannot predict the state

3) Filter of the state

[U(1) , . . .
, v(N)3 Sy(1) .

. . .
. y(N)] => * (NIN)

estinate the state we have data up To

at present Time Time N

This is thewain motivation of the kalman filter algorithm

4) Gray Box System identification (chapier 5)

Why software sensing is so useful ?

This is a MIMO System,
with m inputs,

>vis can. Sti X(t)imp I y . (t) ↑ outputs and m states
. Usually

be actuators

im Control Uz(t) IXy(t) ↓
States

ya(t)3 outputs mxp
systems

Um(t) It
internal Yp(t]

(sensors) because of the cost of sensors

Usually only a few states are measured
,

but the availability of the full state uncasurement

is very useful for the design of control algorithm and monitoring the System (eg . fault detection
,

predictive maintenance... ]

The problem can be solved by adding physical
W(t) system Y(t] sensors or by developing software sensing

X(t) algorithms

Su sensing algo. * (tIt) estimated (not measured) state vector



variable cost of physical sensors (Nx unit cosil

Using physical or software sensors ? In some cases is easy for high-volume
productions sur

because no physical sensing is available ; in many cases we sensing is cheaper

have both option available
. So we have to find a balance

between development (fixed] cost and hardware

[variable) cost

for low-volumes

applications can be

In some cases we might use both (physical and software ( cheaper To install sensors

for redundancy (especially in safety-critical application) .

We have 2 important issues of software sensing : DEV COST fixed cost of
developing Sw

1) Is software sensing feasible
? We have to check sensing algorithm

The observability

2) If it is feasible
,

we have to checkThe level of estimation error his like the measurement error in

physical sensors !)

Physical sensors are preferred but redundancy is made were and more with software sensors. Im some cases
, physical

sensors could be cheaper ,
but software sensor is used when there are installation or space/weight problems.

Tendency Today is To put more more software sensors than physical one.

l'el present kalman Filter algorithm starting froma basic system
- No exogenous input (GuCt) = 0 )

, so onlyTime series

- Linear system
- Time in variant system

and solve the "basic problem" ofThe 1-step predictor . Then we'll make many extensions :

1) from 1 To k-step ahead predicious
2) Filter problem
3) system with exogenous input (GuCt) +01

4) Time-varying systems

5) Non-linear systems (extended Kalman Fister)

Detailed description of the system Clust be a given white-box model)

time series Signal

E
x(t+1) = Fx(t) + Gu(t) + v(t) meise models

f : y(t) = Mx(t) + Bu(t) + vz(t)

Strictly proper System (Du(t) = 0 ft)

with GUCt) = 0 and Dult) = 0 and Two noise models v. (t) and Va(t) ; also

x(t) = [x
, (t) ... xm(t)]T y(t) = [ y, (t) ... yp(t)]T v(t) = [v

, (t) ... wm(t)]

* frequent special case is the one of SISO System ,
where p = m = 1

. If we remove Gulti = 0 we obtain

a Time series signal .

Ct) is the White Noise Vector virwaso
.
Vill defined as UC . Vist is called State NoiseI

V.m(t)

Lor Model Noise) and is used to model internal disturbance or (small) model errors .

Property :

1) E[v. Ct]] = : expected value

2) ElviCtIv, CtIT] = Vi covariance matrix of V. Ct) is square , symmetric and semi-definite - positive
so V

,

2
= 0 (semi-definite positive)

3) E[viCt)V(t-[iT] = 0 Ft
,
VI +O (whiteness property)



St) is the White Noise Vector VywWwso.
Vil defined as UC= . rest is called output or

sensor error and is used To model thenoise of physical sensors .

Property :

1) E[Vz(t]] = : epecied value

2) EL V(t)v(t)T] = Vz covariance matrix of V. Ct) is square , symmetric and semi-definite - positive
So V?20 but we make theadditional request of being definite positive (soV > 0). This will be

↓

usefull To guarante the existence of Kalman filter
3) ELECtIE(t-5)T] = 0 Ft

,
Fe %O (whiteness property)

Consideration between V. and V : we assume that

ElviCtivSt-2)T] = 0 ig ToE
Viz if t = 0 cross correlation matrix (mxp size)

where we assumeThat v.Ct) and Vi(t) can be correlated only at the same Time. In practice usually we can

assume Viz = O

Since the system is a dynamical system ,
we must say something on the initial conditions of the state

equation . Being X(1) The initial state :

- E[X[i]] = Xo [mx1 vector)

- E[(x(1) · Xo)(X(1) - Xo)T] = VART(X-Xo1] = Po (mxm maTrix)

This is a problematic description of the initial state. If Po = o (special case) we know exactly the

initial state
.

We finally assumeThat:

- viCtl is un-correlated with x(1) (v. (t) + X (i) Technical assumptions for the proof of LF's optimality
- val) is un-correlated with x(1) (V(t) + X (i))

Presentation of the solution of Kalman Filter - basic system/basic problem (1-step prediction]
state equation + "correction" : * (t+ 1 (t) = FX(t(t -) + k(t) + e(t)

output equation : Y (t+ (t) = H(t(t-1)

error
-

om :equali e(t) = y(t) - y(t)t -1)

gain equation : k(t) = ( FP(t)Hi + Viz] < HBCt] Hi + V2)
- 1

-

difference Riccali equation (DRE) : P(t+ 1) = (FP(t)FT+ Vi) - (F P(t)Hi + Viz] <HBCt]HT + Vz)
- 1

(F P(t) Hi + Viz3

1)and 50 dynamical equations> We needTwo initial condition for the Two dynamical equations
*(110) = Xo P(1) = Po

Structure of K(t) and DRE : notice that they are a simple block structure
,

built using 3 blocks:

P(t+1) = (FP(t)FT+ V. ) - (FPCt(MT + Vz)(HPCt>HT + V)"[FPCt3HT + Vn]T

STATE MIX OUTPUT MIX

1) State : FP(t)FT + V. = Fand VI are linked To the state eg

2) output : HP(t)MT + V2 => H and Ve are linkedTo The output eg

3) Mix : FPCt)HT + Viz = Mix between state and output equation
Also we can see that:

k(t) = (Mix) · COUTPUT)
- 3

P(t+ 11 = [STaTel - [Mix)(OviPuil"(Mix)T

DRE is a special Type of nonlinear
,
matrix , difference equation

DRE : PCt+ 1) = f(P(t)) + input autonomous difference equationSP(1) = Po



Existence of DRE Xt : notice That
,

To guaranteThe existence of DRE Yt . The matrix

HPCt3MT + Vz

This is a strictly definite positive matrix by we assumed 130 and not only SDP

construction (20) - its invertibility is not

guaranteed

must be invertible; overall,
this matrix is guaranteedTo be (2%) definite positive and so always invertible.

Meaning of PCt) : P(t) is a synneiric , strictly definite positive ,
mxn matrix ; its meaning

P(t) = E[(x(t) - * (t(t- ))(X(t) - * (t(t-3)] = VAR[x(t) -* (t(t-1)]

So it's the covariance matrix of the 1-step prediction error on the state

Block scheme of a system and kalmanfilter

System
V. [t] Vz(t]

x(t]
y(t]i= Physically measured

F
rector of signals

correction of state
-

omequali

+

k(t) e(t)

·i. Y(t(t- 1)

F

Kalman Filter

*(t+ 1(t)

ThelF structure is very intuitive :

· it makes a replica (digital Twin) of the system , except for the Two unmeasurable noises v.(t) and Vi(t)

· it
compares the real measured output with the estimated output and computes The output error

· corrects in feedback the state equation using a gain k(t) applied To the aripus error : e(t) = y(t)-y(t(t-1)

h Tries To follow the real system with a mall model (simulator) with a feedback correction from eutput error . Feedback is

used for estimation and notfor control.

the idea is simple and effective , was known beforeIF (was called state observer in feedback) .

The fundamental
contribution of Kalman was to provide a formula for the optimal choice of correction Jaim k(t)

· if k(t) Too small : under-exploit our information on e(t)

· if h(t) is Too high : over-amplifying the noise or even create instability

h(t) is not just a scalar number (that can be Tuned empirically); is a matrix of size mxp (eg . m = 10
, p =3 =

size of k => 30 : impossible To Tune empirically

Weak point is the knowledge
Vi Vz Viz mot a problem

how can we design ? Covariance error of the sensor



the new Trend is the optimization of V
. and Ve or directly h(t) using Mc (require e dataset

Extension #1 : Multi-step prediction
Assume that * (t+ lt) is known

.

IT can be proven
that future predictions can be found as

* (t + 2(t) = FX(t+ 11t] * (t+ 3(t) = FX(t+z(t) = F2 *(t+ 11t]

So
,
in general we have

* (t+ k(t) = Fk+ *(t+11t] => Y(t+ (t) = HX(t+ k(t)

Extension #2 : Filter (*(tit))

· if F is invertible we can go back and forth between predicted values

·F
-1

(t(t) * (t+ 11t] * (t + 2(t)

· F

S *CtIt) = F" * (t+ 11t) is known as filter.

· if F is not invertibleThere is a special version of F formula (filter version) .
This formula is valid if

Viz = o <in practice always) . The filter version ofThe LF formula is

*(t(t) = FY (t -11t-1) + ko(t) . e(t)

refer to prediction g(tIt-1) = H * (tit-1

Formulation e(t) = y(t) - y(t(t- 1)

ko(t] =<PCtIHT) (HPCt) HT + Vel-2

P(t+ 1) = (FP(t)FT+ Vi) - (F P(t)Hi + Viz] <HBCt]HT + Vz)
- 1

(F P(t) Hi + Viz3

Invertibility of F is not requested in this version of the KF formula
Notice The difference between the gam of the prediction and filter form we miss F

↳ (t) = [FPCtiMT] <HPCt]HT + Vz(
-I

Ro(t) = < PCtIHT] <HPCE3HT+ Vl"

Extension #3 : Exogenous input Vz(t)
NiCt)

t
u(t]

- -
- ()

F

h(t) e(t)
+

tA· H Y(t(t - 1)

F

Kalman filter

Notice That both h(t) and P(t) are exactly the same of the formula of KF without Gu(t) : intuitive because Gut

doesn't add any colditional uncertainty To the system; Gult) is perfectly known (deterministic Signal) .

Obviously the corresponding prediction error variance P(t) does not change



Extension #4 : Time-varying system

x(t + 1) = F(tix(t) + G(t)w(t) + V

E y(t) = ((t)x(t) + ve(t)

So we more from linear Time invariant (LT1) System To a linear Time Varying (LTV) System
#-> F(t] G + G(t) H -> H(t]

ThekF equation are exactly The same . Aging ,
slow variation of system dynamics in Time is a Typical example of

LTV.

y(t)

Asymptotic (or steady state) solution of the Kalman Filter
+

NoticeThat Kalman Filter is on Liv system ,
even when k(t) e(t)

The original system f is LTI (because of The gam k(t) correction
+

The gain is Time-varying ,
so The UF is an LTV System. Y(t(t- 1)

This faci creates 2 main problems :

1) checking (and guaranteeing) The asymptotic Stability of the KF algorithm is very difficult
LTI : x(t+ 1) = Fx(t) + Gu(t) = stability check is easy = EIGCF)

LTV : x(t+ 1) = F(t)x(t) + G(t)v(t) = even if all ElG(F(t)) are Strictly inside The

unit cycle Ft
, stability is not guaranteed ! Checking the stability for an LTV System

(especially if m is large) can be extremely complicated.

2) At every sampling Time
, we must update the computation of k(t) and PCt); k(t) and

DRE computation requires the inversion of a pxp matrix ("output block")

Because of problem 1 and 2 ,
in real application almost always the UF is used in its "asymptotic

version"

DRE is an autonomous dynamic system : P(t+) = f (PCt)) · If PCt) does converge To # The

also k(t) does converge To E
,

which can replace k(t) (constant correction gaim)That Turn

kF into an LTI System

Beforecodressing the question on the existence and the volume of E, let's check the

asymptotical stability property of hF
, assumingThatI does exist.

*(t+ 1(t) = FX(t(t- 1) + ke(t) siable if ElG(F-EM) in umiT

cycle
= FX(t(t- 1) + E [y(t) - y(t(t-1)]

= FY(t(t- 1) + E[y(t) - Hx(t(t-1)] = (F- EH) *(t(t-1) + Ey(t)

where F-FH is the state matrix of the kF
,
so the kF is asymptotically stable if and only if all

The EIG(F-EH) are strikTy inside The unit cycle .

This means that

· The stability of The original systemf depends on F

· The stability of KF depends on F-Fl

5. kF can be asymptotically Stable even if the systemf is not asymptotically siable. Since

↳(t) = <FP(t) Hi + Vz) <HPCt)HT + Vz)T

we have a constantgain h if we have a constant matrix P.

How can we find the equilibrium points of DRE ? Remember :

· Continuous Time System x = f(x) Equilibrium pairs is the solution of O = f(x)
· Discrete Time System x(t+) = f(x(t)) Equilibrium pairs is the solution of X =f(x) (BRE in

our case)



DRE is a discrete time
, dynamic ,

autonomous system and its equilibriaum points are the solution

of :

↑ = [FPFT + V. ) - [FFHT + Viz)[MPHT + V2)" (FPHT + Viz]T

This is a non-linear algebraic vector equation named Algebraic Riccati Equation (ARE)
.

5 is the equilibrium points of the BRE. If a steady state solution of BRE does exist
,
it musi be

a solution of the ARE . So we have 3 key questions :

1) Existence : does BRE have SDP solutions?

2) Convergence : if P does exist
,
does BRE converge To F ?

3) Stability of KF : if we have existence and convergence ,
is the correspondingF

asymptotically Stable ? Are all the EIGCF-EH) stricity inside the unit cycle ?

AnsweringTo these questions is very difficult ,
but we can use Two famous Incorems [Asymptotic

# Theorem 1 . They provide only sufficient conditions for the questions .

1 Asymptotic Kalvam Filter Theorem

Assumptions : Viz = o and f is asymptotically Stable

Them :

· ARE has one and only one strictly definite positive solution F20
· DRE converges To 5 XPo20

·The corresponding I is such that kF is asymptotically stable.

For the statement of the second Theorem , we must recall some concepts of observability and

controllability : The state x(t) is fully observable fromthe output y(t) if and only if

· [i] is gall rank.

For The second Theorem we need a special Type of controllability from the noise v.(t)

Xt+ 1) = Fx(t) + Gu(t) + v(t) v ~Wa(0
,
V, l

v It) is an input for the state equation.
We can define the controllability of the state from imput v. (t)

.

We can manipulate the system state equation in this way
x(t+ 1) = Fx(t) + Gw(t) + Pw(t) w(t) WN(0 ,

I)

whereT is the factorization of v. = N4T identity matrix

Example when m = 1

X(t+ 1) = (2x(t) + 1V(t) V. ~WN(0
. 4] 3 V =4= 2 = V = M

x(t + 1) = Yzx(t) + 2w(t) w(t) - Wa(0, 1)

We can say that the system is fully controllable. From Noise v, (t) if and only if
R = [N =PF- ... F-]

is full rank. The meaning of this special controllability is the faci thatMoise v. Ct) must affect all the

states (We should not have "clean" or noise-free state equations)

2nd asymptotical kF Theorem

Assumptions :

· Viz = 0

· (F. M) is fully observable

· (F
.
M) is fully controllable (V. = NMT

Them

· ARE has I solution F> O CP is guaranteed To be definite positive)
· BRE Converges To P XPozo

· The correspondingI is such that the KF is asymptotically Stable



These theorems are very useful in practice since we can ship the very complicated direct convergence

analysis of DRE

ThelF formulas can be applied under the assumptionThat both v.Ct) and Velt) are white noises .

This assumption can be quite restrictive in many practical cases (eg .
The sensor/output naise

VzIt] is notwhite but a colored noise)

How can we deal with this problem? The workaround is a "Trick" and is called "Model/System
extension"

-

Example
f : E X(t + 1) = ax(t) + y(t) V(t)vWN(0.

1) but p(t) is noTwhite

Y(t) = bx(t) + Vz(t]

1It) cam be modeled as am AR(17 colored voise : G(t)= e(t eltw

and v(t) + e(t)
.

We cannot apply kF Theory !

We expand the noise model

n(t + 1) = cy(t) + e(t+ 1)

and we define v(t) = e(t+ 1) So we obicim

(y(t+ 1) = Cy(t) + v(t) v(t) v WN(0, 1) V + Ve Suncorrelated)

State extension :

X(t) = X, (t] G(t) = Xz(t]

We are including the noise dynamics into the system dynamics. The new system is of order

m = 2
,

x(t) = [*]

X (t+ 1) = aX, (t) + Xz(t)

E xc(t + 1) = [Xz(t) + v(t) = F = ap)n = 130][
y(t) = bx, (t) + Vz(t)

We can applyThe ↳ formulas to obicim

v. (t) = [t] = vict) -was. vi.
10 %

=> V = 01

Vz(t) v WN(0
,
13 = Vz = 1

=> Viz = 0

-

Extension #5 : Non-linear systems (Extended Kalman Filter-EKF)

Consider a State space model system with non-linear dynamics

Ex(t+ 1) = f(x, (t) ,
v(t)) + v(t)

y(t) = h(x(t)) + vz(t)

where f() and bC are now linearfunction of class Chor more. For example ,
a system of its kind

could be :

E x(t+ 1) = (2x(t)5 + v(t) + v(t)

y(t) = yx(t) + Ve(t)

How can we design KF ? Follow the vain idea : model replica and feedback correction



I v,(t)

Vz(t)
+ X(t+ 1)

z
- 1 X(t] h()

+

y(t)
+

+

w(t)
f( : )

t

???
e(t)

t

↑
*St+it)

z
- *(t(t-i) 4() Yy(t(t- 1)

t

f() EKF

What isThe EKF gain
? To design the feedback correction gain we can have 2 different options :

k() e(t) k(t] e(t)

1) Most intuitive and natural : the gain itself 2) The goin is again a linear time varying
is a non-linear functionK(e(t)

,
where block of the LF : ((t)e(t)

↑ () is a non-linear function .

The second option is the adopted by EKF : less :Intuitive but very effective sinceme can reuse most of

kiTheory .

k(t) of ERF can be computed usingThe Traditional KF formula
r(t) = ( F(t) P(t)H(t)T + Viz) (H(t) PCt)H(t1Y + Val

: 2

P(t+) = [F(t)(t)F(t)" + V) - (F(t)P(t)H(t3T + Viz) (H(t)P(t) H(t)" + Vz)"(F(t) P(t)H(t)Y + Viz]
T

we needTo compute F(t) and H(t) at every sampling Time :

F(t) =j(f(x(t) , u(t)

x(t) =(t(t- 1)
H(t)
=f(x)h(x(t) x(t) =(t(t-1)

F(t) and H(t) are Time-varying unatrices obtained by local linearization of the non-linear

functions around the predicted state recomputed at eachTime Step .

The idea of EKF is To Transform a cron-linear time-invariant system into an LTV System ; we can

use kF On LTV systems.

Procedure of EKF aT Time :

1) Take the Last available prediction of the state *(tIt-1)

2) Using *(tIt-1)
, compute the local linearization matrices F(t) and H(t)

3) Comprie k(t) and update BRE up To P(t+1

4) Comprie * Ct+ lt) ready for the next iteration



EkF is very powerful since it can be applied To non linear systems .
IT does not have a sizey state

Casymptotic I solution : so EnF is a non linear and Time-varyingSystem. As a consequence :

1) Impossible (or very difficult) To guarantee the asymptotic stability (only extensive empirical
Simulation can be done ]

2) Computation Load is high (at each Timeme musi compute F(t)
,
H(t)

,
P(t)

,
k(t))

ERF Today is largely used but with limitations for
· safeig - critical applications : sleep estimation on ABS

· mission critical application : rover on Mars
.

Example : end-to-end application on a Toy real-world problem
springness

mass of the object

#(t] X[t]
Input: control force F

k

Output: position x(t) M F

numum

EstimateThe unmeasurable speed x(t)
↓

X

Easy may : numerical derivative of position signal x(t). Not optimal because friction coefficient
creates a phase shift if we try To clean the big noise generated by
numerical differentiation

X(t] %+
x(t) LPF *[t]

Not optimal

Let's useThe optical solution with kF

1) BuildThe system model (typically is white-box physical model

# Newton Law : x(t)M = - kx(t) - cX(t) + F(t)

elastic force of the friction force (dissipative
spring (conservative)

It is a Linear
,

20 order dynamical system (2°

ordinary differential equation) continuous Time

We can transform it into standard state space form : we need 2 firstorder equations , 2 state variables

(in mechanical systems : position x(t) and speed x(t) (

[x(t)=][ 1.

InContinuousTime domain, the state space representation become :

:, (t) = Xz(t)

x2(t) = - x, (t) - -xz(t) + ,y F(t) => jE
X

A ] B=
y(t) = X, (t)



2) More from continuous Time To discrete Time

-

One of the simplest way of discretizing a continuou Time system isTo use The Evlero-forward method :

*(t)
X(t+ 1) - x(t)

X

where X is the sampling Time Leg. X = 10 ms) . Applying in our system :

X, (t+1) -X,(t)
= Xz(t)E xa(t+ x(t)
=

- 4/MX
, (t) - YMxz(t) + ( F(t)

y(t) = X ,(t)

So im Standard SS form in discrete Time :

X(t+ 1) = X, (t) +(Xz(t)

E xx(t+ 1) = EyPx , (t) - Gxx(t) + x(t) +F()- -[][]n = [10]

y(t) = x, (t)

3) Add Thenoises

X(t+ 1) = X, (t) +(Xz(t) + Vi(t)

E Xz(t+ 1) = EyPx , (t) - Cxa(t) + Xa(t) + 4 F(t) + Viz(t)

y(t) = x, (t) + Vz(t)

considering The standard state space for a discreteTime system we can obtain

[u(t) Iv, (t) = ve(t) ~ Wa(0,
Vil V(t) v WN(0,

Vz]

The problem is how to define V
.

Vc (and Unl
. Empirically solved :

- Viz = o No reason of correlation

- Ve can be designed using the sensor data sheet or analyzing the signal recorded for the sensor

- VI is much more complicated : usually we simplify and me assume diagonal matrix V. = X& o

with X.? Xs empirically Tuned from data [ ·X? I

New stream of research of kF is To estimate from data(learning) meraparameters : in principle ,

UF is not am M

Technique; in practice Today a lotof learning from data is used To Tune at best the metaparameter

4) Apply kF (linear and Time invarian): we can Try To use Theorem 1/Theorem 2


