
* Graybox System Identification

Kalman filter is a method for software sensor but can be used also for graybox system identification .

Problem setting of a graybox system identification : we have a model built in a whitebox may

8: (x(t + 1) = f(x(t) ,
u(t) ; d) + v(t)

y(t) = h(x(t)
,

v(t) ;
8) + Vz(t)

f() and h)) are known mathematical functions having some unknown parameters 8 (with a physical meaning) .

Problem : estimateEw from a measured dataset

& v() ...(N]Y Ey(1) . . . y(N)]

We can solve this problem using Kalman filter (Trick : state extension)

f : = f(x(t) ,
v(t) ; &(t)) + v(t) xE(t) = [x]X(t+ 1)

&(t+1) = 8(t) + va(t)E
y(t) = h(x(t)

,
o(t) ; &(t)) + v(t)

Focus on new state equation : O(t+ 1) = &(t) + Vy(t)
nu

- it is a fictitious equation (we need it since each states need its state equation)
- O(t+ 1) = O(t) is the core dynamical relationship .

This is the equation of a constant quantity /ok since we

wantTo estimate a considut value of parameter) .
OCt+1) = &(t) is NOT asymptotically Stable (No problem

Since kF cam deal with stable lunsiable systems)
- we need to add thisnoise otherwise ht wouldTrust Too much the initial condition and not search for

The correct value

The problem is the noise definition . Usual assumption on volt]

Volt) -WN(o
, Vo) v, + Vo

Typical Simplification of Up : all the features of Vo are condensed into 1 single parameter X
This becomes a Tuning parameter

Vo = X 80 Ij · to o This parameter X is empirically turned

00 x

S(t)
& choice of large X8 (fast convergence but large variance at

Steady state)elemenminascan Do show convergence but lou variance at steady started

Initial condition.

t

Best choice? Depends on the length of the dataset and if The True parameter does change in Time and we want To

keep the algorithm always on.



Method very useful especially if used at runtime /O is actually time-varying) . LF in his case provides at the same

time both state estimation * (tIt) and parameter

Example.
- 3 sensor - 3 sensor

- 10 states 3)7 more reasonable3)23 is Too much - 5 states

- 15 parameters
-

> parameters

Example :

springness
mass of the object While Box equation of the dynamics of the system

k
* (t(M = - kx(t) - CX(t) +F(x)=CS

M F y(t) = x(t)

numum

↓
State space equation and discretization :

X
X,(t+ 1) = X,(t) + XXz(t)friction coefficient
Xa(t+ 1) =

- k4mx, (t) + (1- CYM)xz(t) + EF(x)EC is unknown

y(t) = X ,
(t)

State extension : Xy(t) = [ (t)
. The overall system is

X,(t + 1) = X.(t) + XXz(t) + V, (t)

=
- k4/MX, (t) + (1- xy(t) .YM)xz(t) + E F(x) + vz(t)X2(t+ 1)E xz(t+ 1) = xz(t) + Viz(t)

= X ,
(t) + V(t]y(t)

Assume :

V. (t) ~ WN(0
,
Vil ]v[Vi =Vz(t) ~ WN(0,
Val

Viz = 0

Ready for Kalman filter application To get both state and friction
System Typically becomes non-linear (due To True State multiplication Xy(t) · Xc(t))

gray box identification can be done in awore classical way with a parametric optimization

& w.() . . . (N) 3
u(t] M(0) Y(t)

=>(yl) y(n)} = Jw(d) = Y, (y(t) -M(8)u(t))"
Simulation error

In many applications , we may know one possible model of a system M(Q) which depends on some physical
parameters. In state space ,

the model becomes (as function of 8) :

*(t) = A(Q)x(t) + B(0)v(t)E
y(t) = C(8)x(t) + D(d)v(t)

Our goal isTo estimate O from some inpuiloiput data D = (u(t),y(t))t= 0... N



Simulation Error Method : we can select one particular E and run a simulation of the model MCE) and

checkThe difference between the simulated output Ysim (t; ) andThe real outputy(t)

Ysim (t = Q) = M(8) v(t)DopT = arguing-p.

RMS (y(t)- Ysim(tia)

where RMS () stands for RootMean Square and O is the set of all possible 8 ; Ysim (t: 8) is the simulation

of the system for a given D
.

In general ,
the optimization is non-convex and cannot be written linearly in the parameter vector D.

The dataseti must be informative : we do not need lay dataset but one which are ableTo excite all

The system dynamics of interest
· The identified parameters directly reflectThe quality of data.

How To excite all the system dynamics can differ a lot from system To system , but in general the most

used signals for identification are :

- Simesweep (or multiple sine experiment) :

we can span all the frequency range
which is important for identifying the

system. The dataset contains useful info
both in time/frequency domain

.

- Pseudorandom Binary Signal : it's a signal which

only has 2 values (A) and commutes between

them at random
.

From a special perspective ,
the

PRBS has a constant spectrum upTo its cutting

frequency . PRBS data contains a lotof information
in frequency domain

Usually ,
The optimization is performed on at least one dataset and then validated on at least a

qualitatively different dataset (The experiment is not just a repetition of the optimization dataset)
.

The

validation analysismusi be performed both in time/frequency domain

-

#ample : vehicle suspension identification
We can model a single vehicle suspension using the QC-model for an active suspension 8 : [Mkc]

T

Fet load-Transfer force

Body mass balance : Mi = F-Fet-k(z-ze) - c(z-zz)
&< mass = M
4 car Z Wheel mass balance : Met = - F + h(z - zt) + c(z - zz) - kt (zt - zr)

[
F K

State-Space model :

-

zr(t)

zt x(t) = []ME
y =]v() = F(t)d(t) = (Fet(z]Five mass

ke Tire STiff. State space continuous-time model :

*(t) = Ax(t) + Bow(t) + Bdd(t)zr E-
y(t) = [x(t) + Buv(t) + Ddv(t)

Experiments :

1) Vehicle is Still : Er = 0 (d(t) = 0 )

2) No pitch and roll movement : Fet =o (d(t) = 0 )

3) F(t) is a simesweep


