```
5 - Graybox system Identification
                kaluan filter is a method for software sensor but can be used also for graybox system identification
               Problem setting of a groybox system identification: we have a model built in a whitebox may
                                                                                                                                                           J: \  x(t+1) = f(x(t), v(t); 3) + v(t)

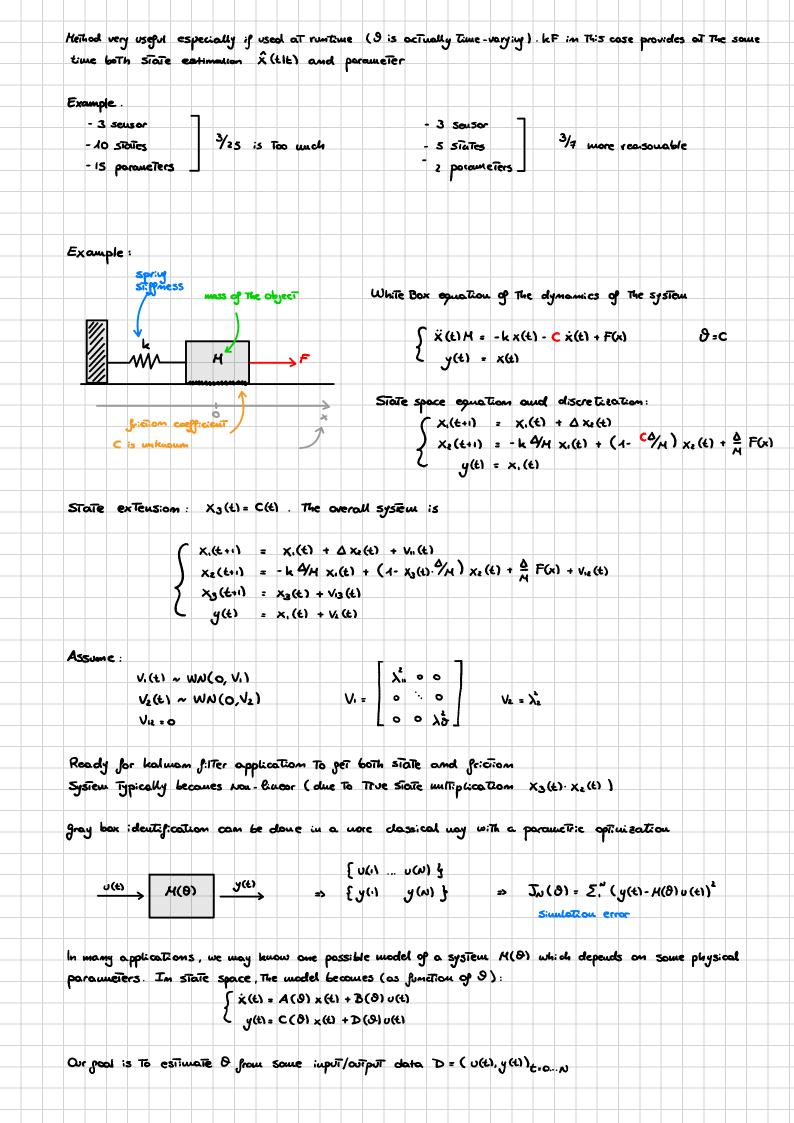
y(t) = h(x(t), v(t); 3) + v_2(t)
               of () and b () are known mathematical functions having some unknown parameters & ( with a physical meaning).
                 Problem: estimate Du from a uneasured dataset
                                                                                               { v(v) ... y(w) } {y(v) ... y(w) }
                We can solve This problem using kalmon filter (Trick: state extension)
                                                                                                                                                                                                                                                                                          XE (t) = X(t) 3(t)

\begin{cases}
S : \begin{cases}
X(t+1) = f(X(t), v(t); \theta(t)) + v_1(t) \\
\theta(t+1) = \theta(t) + v_2(t)
\end{cases}

g(t) = h(X(t), v(t); \theta(t)) + v_2(t)

                   Focus on new state equation: 0(t+1) = 0(t) + 10 (t)
                           - it is a "ficitious" oquation ( we need it since each states need its state equation)
                           - O(t+1) = O(t) is the core dynamical relationship. This is the equation of a constant quantity (de since we
                                             wout to estimate a constant value of parameter). O(t+1) = O(t) is Abt asymptotically stable (Ab problem
                                             since kf can deal with stable funstable systems)
                           - we need to add this maise otherwise kt would trust too much the initial condition and not search for
                                      the correct value
               The problem is The woise definition. Usual assumption on vo(t)
                                                                                                                                  Vo(€) ~ WW (o, Vo) V., V≥ 1 Vo
                Typical simplification of Vo: all the features of Vo are condensed into 1 simple parameter 23
                                                                                                                                                             This becomes a Timing parameter
                                                                  V_0 = \begin{pmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^2 & 0 \end{pmatrix}

This parameter \lambda^2 = \lambda^2 
                                                                                                                                                                                                 choice of large \lambda \hat{s} (fast convergence but large variance at steady state)
                                                                                       Choice of Swall ho ( Slow convergence but con variance at steady state)
               Best choice? Depends on the bougth of the clataset and if the time parameter closs charge in time and we man to
                      keep the alporithm always om.
```



Simulation Error Hethod: we can select one particular O and rum a simulation of the model M(0) and check the difference between the simulated output ysim (t; 5) and the real output y(t) Opp = arpmin $0 \in 0$ RMS ($y(t) - y_{sim}(t; \theta)$) ysim (+; 0) = M(0) u(+) where RHS () stands for Root Mean Square and O is the set of all possible O; young (t; D) is the simulation of the system for a given O. In peneral, the optimization is non-convex and cannot be written ancorty in the parameter vector O. The dataset D must be informative: we do not need long dataset but one which are able to excite all The system dynamics of interest. The identified parameters objectly reflect the quality of data. How to excite all the system dynamics com differ a lot from system to system, but in peneral the most used signals for identification are: - Smesweep (or multiple sine experiment): Sweep frequency range we can span all the frequency rauge which is important for identifying the Constant spectrum system. The clataset contains useful info both in time / frequency domoin. PRBS generated with $f_{max} = 100 \text{ Hz}$ - Pseudorandom Binary Signal: It's a signal which only has 2 values (± A) and commutes between Them at random. From a spectral perspective, the PRBS has a constant spectrum up to its culting frequency. PRBS do a contains a lot of information in frequency domain Usually, the optimization is performed on all least one dataset and then validated on all least a qualitatively different dataset (The experiment is not just a repetition of the optimization dataset). The validation analysis wist be performed both in time / frequency domain Example: vehicle suspension identification We can wodel a siyle vehicle suspension using the QC-wodel for an active suspension 8-[Mkc] Mi = F-Fet - k(2-2+1-c(2-24) Body mass balance: Wheel mass balance: Mtit = - F + k(2-21) + C(2-21) - kt (21-21) State-Space wodel: $x(t) = \begin{bmatrix} \dot{z} \\ \dot{z}$ Ske The sills State space continous-time model: $\begin{array}{c} \textbf{(k)} = \textbf{A} \times \textbf{(k)} + \textbf{B} \cup \textbf{(k)} + \textbf{B} \cup \textbf{(k)} + \textbf{B} \cup \textbf{(k)} \\ \textbf{J} & \textbf{(k)} = \textbf{C} \times \textbf{(k)} + \textbf{D} \cup \textbf{(k)} + \textbf{D} \cup \textbf{(k)} \\ \textbf{J} & \textbf{(k)} = \textbf{C} \times \textbf{(k)} + \textbf{D} \cup \textbf{(k)} + \textbf{D} \cup \textbf{(k)} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J} \\ \textbf{J} & \textbf{J} & \textbf{J} & \textbf{J$ Experiments: 1) Vehicle is sīill: 2, =0 (d(1)=0) 2) No pitch and roll movement: Fet =0 (d(t) =0) 3) F(t) is a simesweep